
www.manaraa.com

Assessing Adaptive Learning Styles in Computer Science

 Through a Virtual World

by

Nizar Kury

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2017 by the

Graduate Supervisory Committee:

Brian C. Nelson, Chair

Ihan Hsiao

Yoshihiro Kobayashi

ARIZONA STATE UNIVERSITY

December 2017

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10642664

10642664

2017

www.manaraa.com

i

ABSTRACT

Programming is quickly becoming as ubiquitous and essential a skill as general

mathematics. However, many elementary and high school students are still not aware of

what the computer science field entails. To make matters worse, students who are

introduced to computer science are frequently being fed only part of what it is about

rather than its entire construction. Consequently, they feel out of their depth when they

approach college. Research has discovered that by teaching computer science and

programming through a problem-driven approach and focusing on a combination of

syntax and computational thinking, students can be prepared when entering higher levels

of computer science education.

 This thesis describes the design, development, and early user testing of a theory-

based virtual world for computer science instruction called System Dot. System Dot was

designed to visually manifest programming instructions into interactable objects, giving

players a way to see coding as tangible entities rather than text on a white screen. In order

for System Dot to convey the true nature of computer science, a custom predictive

recursive descent parser was embedded in the program to validate any user-generated

solutions to pre-defined logical platforming puzzles.

Steps were taken to adapt the virtual world to player behavior by creating a

system to detect their learning style playing the game. Through a dynamic Bayesian

network, System Dot aims to classify a player’s learning style based on the Felder-

Sylverman Learning Style Model (FSLSM). Testers played through the first half of

System Dot, which was enough to test out the Bayesian network and initial learning style

www.manaraa.com

ii

classification. This classification was then compared to the assessment by Felder’s Index

of Learning Styles Questionnaire (ILSQ). Lastly, this thesis will also discuss ways to use

the results from the user testing to implement a personalized feedback system for the

virtual world in the future and what has been learned through the learning style method.

www.manaraa.com

iii

ACKNOWLEDGMENTS

Thank you, Dr. Brian Nelson, for not only being my thesis committee chair, but also a

mentor for the past two years and a guide through the frustrating world of computer

science education. Thank you, Dr. Sharon Hsiao, for serving as a member on my

committee as well as being patient with me when it came to picking your brain about

software adaptiveness. Lastly, thank you, Dr. Yoshihiro Kobayashi, for being a member

of my committee on short notice and teaching me these game development principles for

the past three years.

www.manaraa.com

iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

 .

1. COMPUTER SCIENCE EDUCATION TODAY ..1

1.1 Overview ...1

1.2 Introduction ...2

1.3 Perceptions of Computer Science ..3

1.4 Problems with Current Computer Science Instruction10

1.5 How Computer Science Should be Taught ..16

1.6 Summary ..25

1.7 The Relevance and Rationale Behind System Dot ..26

2. VIRTUAL WORLD DESIGN AND FLOW ..29

2.1 A Problem-Driven Approach...29

2.2 Tutorial ..30

2.3 Traversal of Fully Functioning Environment ..35

2.4 Introduction of Faults ..37

2.5 Assessment ..39

2.6 The CPU (Incentivisation) ...45

www.manaraa.com

v

CHAPTER Page

2.7 The Instructional Flow Beyond the First Level ...49

2.8 Summary ..55

3. TECHNICAL DESCRIPTION ...57

3.1 Custom Parser ..58

3.2 Object Terminal Window ..61

3.3 Dialogue XML Trees ...63

3.4 Data Logging ...66

4. THE ADAPTABILITY COMPONENT...71

4.1 Introduction ...71

4.2 The Learning Style Model ...74

4.3 Dynamic Bayesian Network Implementation..75

4.4 Sample Assessment ...85

5. USABILITY TESTING CASE STUDY AND RESULTS88

5.1 Introduction ...88

5.2 Data Collected ...88

5.3 A Case Study ...90

5.4 Usability Test Results ..104

www.manaraa.com

vi

CHAPTER Page

6. DISCUSSION ...107

6.1 Adaptability Component of the Virtual World ..107

6.2 Usability Testing..113

7. CONCLUSION AND FUTURE WORK ...116

7.1 Conclusion ...116

7.2 Contributions to the Field ..117

7.3 Future Work ...117

REFERENCES ...120

www.manaraa.com

vii

LIST OF TABLES

Table Page

2.1: Virtual World Design Breakdown .. 55

4.1: Summation of DBN Parameters ... 80

4.2: Preliminary Processing Learning Style Parameter Weights 83

4.3: Preliminary Perception Learning Style Parameter Weights 84

4.4: Preliminary Input Learning Style Parameter Weights .. 85

5.1: Player’s ILSQ Rating .. 90

5.2: Summation of Player’s Learning Style Classification Compared to ILSQ 103

5.3: SUS Scores ... 106

www.manaraa.com

viii

LIST OF FIGURES

Figure Page

2.1: Interaction between Player and Intellisense .. 31

2.2: Intellisense Providing Information about Caches ... 32

2.3: Intellisense Teaching the Player to Hack .. 33

2.4: Intellisense Teaching the Player to Hack .. 34

2.5: Observing objects with legacy code in a fully functioning environment 35

2.6: Thinking Creatively about Solutions to Puzzles ... 38

2.7: Binapede Boss Fight ... 41

2.8: Vanquishing Binapede through Jumping .. 42

2.9: The Necessity to Hack during Binapede’s Boss Fight ... 44

2.10: Using Movement Commands in Binapede’s Boss Fight 45

2.11: Player Absorbing Bits ... 46

2.12: Converting from Decimal to Binary through Bits .. 47

2.13: A Look at the RAM Shop ... 48

2.14: The System Map ... 50

2.15: Conditional Statements Mapped to Pipes ... 53

3.1: A Look at the Unity Environment .. 57

3.2: A Mapping of Unity’s Inspector with In-Game View .. 62

3.3: Example of Dialogue XML .. 64

3.4: Class Diagram of Dialogue System .. 65

3.5: In-Game View of Dialogue Window .. 66

3.6: Example of a Log File .. 67

www.manaraa.com

ix

Figure Page

3.7: Example of Adaptive Statistics in Log File .. 69

3.8: Example of Checkpoints in the First Level .. 70

4.1: Conglomerated DBN [A] .. 81

4.2: Separated DBN [B] ... 81

4.3: DBN Adjusts Over Time .. 82

5.1: IntelliSense’s Movement Tutorial .. 91

5.2: Player’s Log File during IntelliSense’s Movement Tutorial 92

5.3: Player’s Log File for Faulty Area ... 93

5.4: Game View of Faulty Area ... 95

5.5: API Showing Solution to Enemy Blocking the Path .. 96

5.6: Player’s Log File for Passing Enemy Blocking the Path .. 96

5.7: Player’s Adaptive Stats after the First Level .. 98

5.8: Second Level’s Activation Platform Puzzle ... 100

5.9: Player’s Log File for Passing Second Level’s Activation Platform Puzzle 101

5.10: Player’s Adaptive Stats After Second Level... 102

5.11: Change of Learning Styles over Four Time Stamps in Case Study.................... 103

www.manaraa.com

1

1. COMPUTER SCIENCE EDUCATION TODAY

1.1 Overview

This thesis describes the design, development, and early user testing of a theory-

based virtual world for computer science (CS) instruction called System Dot. System Dot

was designed with learning theory in mind. The virtual world visually manifests

programming instructions into interactable objects, giving players a way to see coding as

tangible entities rather than text on a white screen. In order for System Dot to convey the

true nature of computer science, a literature review was conducted surveying the

perceptions, problems, and solutions of current CS education. The next two sections will

explore the design and technical decisions taken to achieve an effective CS learning

environment.

Afterward, the thesis will shift gears and discuss the steps taken to adapt the

virtual world to player behavior through the implementation of a dynamic learning style

detection system. Through a dynamic Bayesian network, System Dot aims to classify a

player’s learning style based on the Felder-Sylverman Learning Style Model (FSLSM).

To test out the Bayesian network and initial learning style classification, testers played

through the first half of System Dot. This classification was then compared to the

assessment by Felder’s Index of Learning Styles Questionnaire (ILSQ). Finally, this

thesis will also discuss ways to use the results from the user testing to implement a

personalized feedback system for the virtual world in the future and what has been

learned through the learning style method.

www.manaraa.com

2

1.2 Introduction

 According to the US Bureau of Statistics, more than half the jobs today require

some form of experience with using computers. By 2023, experts predict that number

will increase by twenty-seven percent (Microsoft, n.d.). Unfortunately, most K-12

schools do not currently express the importance of the computer science field. Currently,

opportunities to learn about and practice computational thinking and design in schools is

set aside for a relatively small sub-population of students who actively pursue it. To make

matters worse, few schools in the United States allow CS to contribute towards

graduating high school, only five percent of high schools offer AP Computer Science,

and only forty percent of schools offer any kind of CS course (Freeman et al., 2014). This

lack of exposure to the field at a young age handicaps students by not providing them

with a foundation to build on when seeking a logic-intensive degree.

 When asked why CS courses are not actively being implemented in their schools,

principals and superintendents claim that there is an absence of interest from their

students (Gallup, 2016b). However, a poll by Gallup indicates that 90% of parents and

students in the US have a favorable view of CS (Gallup, 2016b). Perhaps this perception

by principals and superintendents stems from the lack of success students achieve in CS

courses. Even if CS courses become the new norm in elementary and high schools, there

is still the problem of the field being introduced incorrectly in a way that harms a

student’s academic future. Schools are essentially boarding a myriad of students on the

“CS Ship” to an uncharted territory, but not preparing them for the dangers and mysteries

www.manaraa.com

3

this land holds. If a solution arises to why students are struggling with CS both in and

before college, then programming classes can be introduced in the right way.

 The following papers mentioned in this section of the thesis discuss ways in

which CS can be taught in an effective and resourceful fashion while also avoiding the

pitfalls many educational institutions fall in. For instance, problem-solving (a key

component of computational thinking and programming) should not be taught in a

repetitive, “plug-and-chug” kind of way. Instead, students should approach problems

with a computational, creative mindset. Furthermore, CS is being deceptively introduced,

malforming students’ preliminary perceptions of CS. Afterward, we will explore how

System Dot implements the solutions presented in the studies.

1.3 Perceptions of Computer Science

 One of the primary reasons for the lack of student participation in CS courses may

be their preliminary perception about the difficulty, relevance, and ‘coolness’ of the

material. K-12 schools introduce CS haphazardly, often failing to illustrate what the field

entails. When students receive an inaccurate depiction of CS when they are first

introduced to the subject, it not only reduces the possibility that the student will take any

interest in computing, but it also prevents them from giving a career they would have

thought interesting a chance (Bell, Alexander, Freeman, & Grimley, 2009). There are

three main distinguishing factors that sway a child’s mind in an adverse direction when

thinking about CS. The first is a skewed understanding of CS itself-- a majority of

students mistake CS for mere computer use and Internet browsing (Ben-Ari, 2001;

www.manaraa.com

4

Carter, 2006; Gallup, 2016a; Gallup, 2016b). The second is a teacher’s unwarranted

emphasis on math when introducing CS and when describing the requirements for a CS

degree, which deters weaker math students or those with low self-efficacy in math from

discovering how logic and not math-intensive the field actually is (Bell et al., 2009; Ben-

Ari, 2001; Carter, 2006; Gallup, 2016a; Gallup, 2016b). Lastly, popular culture is

painting CS in a harmful, “uncool” light causing not only students but also parents to

negatively stereotype and judge the field with extreme prejudice (Carter, 2006; Gallup,

2016a; Gallup, 2016b). Each of these factors will be discussed in further depth below

with problems and solutions outlined by relevant studies.

1.3.1 What is Computer Science?

 What exactly does computer science entail? According to Gallup, computer

science is “... the study of how computers are designed and how to write step-by-step

instructions to get them to do what you want them to do” (Gallup, 2016b). Of course,

computers are used to exercise these sequential instructions, but that should not be

associated with the main purpose of CS. However, when 836 high school pre-Calculus

and Calculus students were asked to define CS in one study, four out of five students

reduced the field to a process of writing step-by-step instructions, or programming

(Carter, 2006). The Association of Computing Machinery or ACM states that CS not only

includes programming, but also hardware design, networking, graphic systems,

databases, computer security, logic, and artificial intelligence, just to name a few (Barr &

www.manaraa.com

5

Stephenson, 2011). Surprisingly, only two percent of students in the previous study

correctly identified the full extent of CS (Carter, 2006).

 Two major problems arise from this misunderstanding of CS, representing

opposite sides of a spectrum. On one hand, students may be disinterested at the thought

of writing code and getting entangled with its syntax. Consequently, they will

immediately dismiss any desire to explore CS and not discover that the subject revolves

around much more. On the other hand, students may think that CS only involves

programming and become addicted to writing programs and executing them. However,

when they reach more difficult concepts like memory management and algorithmic

complexities, they start to feel like the material is out of their depth. Their early

misconceptions start holding them back. With either of these two problems, students give

up on CS based on the false perception that CS only encompasses coding.

 These problems stem in part from a learning theory called constructivism.

According to Ben-Ari (1998), constructivism is how “... knowledge is actively

constructed by the student, not passively absorbed from textbooks and lectures…” (Ben-

Ari, 2001). When a student is told in the beginning of their CS career that CS is only

about programming, they will frame subsequent knowledge building about CS based on

their initial misconceptions. Consequently, no matter how many times later lectures or

textbooks stress material outside of programming, the student will continue to find a way

to tie it into their early conception of CS as programming only.

Ben-Ari also points out that, just like math instruction, teachers refuse to expose

the true nature of CS in order to keep the student engaged. Over time, as the student

www.manaraa.com

6

learns more about the hardware, artificial intelligence, and so on, they begin forming

misconceptions about CS that derail their progress. Conversely, if the student had a

relaxed model of CS and approached the subject from a constructivist point of view, then

Ben-Ari argues that those misconceptions do not become errors of judgement, but logical

conceptions from an unwavering perception of CS. Therefore, the student remains

fascinated and persistent with their pursuit of CS rather than deceived and fatigued by its

surprises (Ben-Ari, 2001).

1.3.2 The Façade of the Need for Strong Math Skills

 Problem-solving has been traditionally taught in math classes at an elementary

school level; it is a child’s first foray into the unknown world of numbers and how to

solve problems with them. Because CS involves solving similar types of conundrums,

teachers and principals tend to associate CS to math. A recent study by Gallup (2016a)

estimates that half of teachers and principals believe that people who are proficient with

math are equally as proficient with CS. As a result, they (1) stress that only math-oriented

students should take CS and (2) CS requires an intensive amount of mathematical

knowledge to be successful in it. Gallup polled students’ thoughts on math and

discovered that about forty percent think they are “very skilled” in math or science.

Because students believe they need to be “very skilled” in math, they start to view CS as

a field that only “smart” people are successful in. So much so that half of students believe

that they need to be very smart to learn CS. The more mental barriers are placed on CS,

the less students will be enticed with giving it an opportunity.

www.manaraa.com

7

 A strong emphasis on mathematics also harms how CS is being introduced in K-

12 classrooms. In these classes, students are being taught methods for solving complex

arithmetic and number theory problems. One of these is the infamous “plug-and-chug”

method, which simply relies on the student finding a problem of similar stature and

applying the old problem’s methodologies of solving it to the new problem. Since

teachers and principals associate CS so heavily with mathematics, they begin to teach

these classes like a math class. When approaching computational problems, they employ

a plug-and-chug method. However, as illustrated by Barr and Stephenson (2011),

computer science demands computational thinking and not simply a rote systematic

approach when tackling its problems.

According to the efforts by the Computer Science Teachers Association (CSTA)

and the International Society for Technology in Education (ISTE), computational

thinking is “... an approach to solving problems in a way that can be implemented with a

computer. Students become not merely tool users but tool builders” (Barr & Stephenson,

2011). Instead of giving students the tools to solve computational problems, teachers

should start exposing students to the intricacies of these tools and how to build them from

scratch. Traditionally, when a student gets a math question wrong, they tend to give up on

finding a solution another way because the systematic way it is being solved does not

allow flexibility or hope that a solution is there. It is like being told to “follow the yellow

brick road” and then finding a dark pit at the end; the student is instantly lost once they

reach the end of the systematic approach.

www.manaraa.com

8

However, as outlined by the CSTA and ISTE, computational thinking opens a

student’s mind to this flexible thinking style. When a student fails, teachers embrace that

failure and stress to students that preliminary failure is the path to success just like how a

computer continues to find a solution to a problem no matter how many roadblocks are in

its way. Additionally, students have more tools in their belt when problem-solving

creatively. Instead of exclusively plugging-and-chugging, students will be able to

decompose a problem, negotiate between different avenues of attack, and then agree on

an overall plan (Barr & Stephenson, 2011). If that plan fails, they have other avenues to

try. These learning methods need to be implemented in order for computer science to be

introduced and taught effectively and engagingly.

1.3.3 Amusing Ourselves to Disassociation

 Popular culture plays an important role in forming stereotypes many students and

parents think of when someone asks them who they know in CS. Popular television

shows like Silicon Valley and Big Bang Theory typically depict programmers as skinny

white males who spend hours in front of a computer, tirelessly coding or hacking away

with little to no social interaction. According to Gallup (2016a), only seven percent of

minority students like Blacks or Hispanics report seeing people who look like them doing

computer science in movies or TV shows. Furthermore, more than sixty percent of

students say boys are more suited for and interested in learning CS than girls. Research

by Google shows that high school students who saw reflections of themselves handling

computers and programming were more likely to be enticed to learn about CS (Gallup,

www.manaraa.com

9

2016a). These perceptions stem from what students see every day; CS is not being

advertised appetizingly in our culture and that needs to change.

 The classrooms cannot fix the problem. When students don’t see other students of

similar race or gender pursuing CS, they will be highly unlikely to pursue it. As a result,

when those students don’t learn CS, it continues to perpetuate a CS student population

made up mainly of white males. The problem becomes a Catch-22 that K-12 schools

cannot internally fix unless CS becomes a required course for graduation. However, if

this perception of CS in our popular culture through television shows, fiction novels, and

films changes, there can be a push towards an acceptance of these diverse CS students

into the field.

 Nonetheless, Carter (2006) discovered that even if the CS population becomes

more diverse, there is still a negative perception of what CS professions actually do.

Based on her survey, the strongest influence against CS was the lack of desire to sit in

front of a computer all day. Additionally, students, specifically female, perceived that CS

had no relation to another college major they were choosing and did not even consider it.

Perhaps these perceptions come from programmers depicted in popular culture as sitting

in their parents’ basement playing video games and coding. When all females see are

people who know CS using it to isolate themselves from society or enjoying

computerized forms of entertainment, it is hard for them to visualize how CS can be

extended to include their academic passions (Carter, 2006).

CS is incredibly social and applicable to almost any field. Whether it is a medical

paper, business plan, or defense case, the logical skills learned from CS can be applied to

www.manaraa.com

10

anything that requires a logical construction of information. For instance, the imperative

flow of a program acts like the argumentative flow of a philosophical paper. Furthermore,

companies nowadays have found it a necessity for programmers to communicate with

each other in order to overcome hurdles more cost-effectively and time efficiently. In

fact, Williams, Wiebe, Yang, et al. (2002) conducted a study about how students retain

more knowledge when they pair program. According to them, pair programming is “... a

style of programming in which two programmers work side-by-side at one computer,

continuously collaborating on the same design, algorithm, code, or test” (Williams et al.,

2002). When they implemented this practice with a classroom, they saw a 23% increase

in passing grades and overall enjoyment over a classroom that remained solo. Socializing

and working in teams is a vital component in CS and it is popular culture’s turn to catch

up to this trend. Overall, until students stop disassociating themselves from CS and

creating excuses for why they are not the right fit for CS, schools should instead be trying

to fit CS into students’ lives by destroying these harmful deceptions being advertised.

1.4 Problems with Current Computer Science Instruction

 In addition to the lack of CS emphasis in many K-12 schools, there is also a

problem in the way CS is being taught in the relatively few schools that are offering a

class or club. For example, the College Board’s AP Computer Science Exam facilitates a

negative viewpoint of CS by stressing programming and syntax over general computer

knowledge and infrastructure (Carter, 2006; Gallup, 2016b). Additionally, some past CS

curricula attest to this false prioritization of syntax rules by failing to mention how any

www.manaraa.com

11

programming is used in the foundation of a computer. Teachers also tend to use external

tools like Scratch or CodeAcademy to introduce or strengthen concepts, but they do not

realize that use of these kinds of tools may be damaging the way students think about CS

(Cooper, Dann, & Pausch, 2003; Meerbaum-Salant, Armoni, & Ben-Ari, 2013). Let us

discuss more specifically how each of these methods of current instruction are harming

the way students are being introduced and taught CS.

1.4.1 Downfalls of the AP CS Curriculum

 As discussed previously, the association of CS education with math instruction

can lead to CS being taught using a rote, systematic approach rather than computationally

and creatively. Unfortunately, this false methodology is also being stressed in the

structure of the College Board’s AP Computer Science exam, a high school student’s first

real preface to the CS college major. The main programming language the course

revolves around is Java, a high-level object-oriented language that is English-like in its

syntax and relatively simple to understand. According to the AP Computer Science A

Course Description from Fall 2014, which can be found on the College Board’s website,

the main topics are divided as follows for the main multiple-choice section of the exam:

● 55-75% Programming Fundamentals

● 20-40% Data Structures

● 5-15% Logic

● 25-45% Algorithms and Problem Solving

● ...

www.manaraa.com

12

● 2-10% Software Engineering

 Over three-quarters of the exam directly revolves around programming while the

other sections (logic and software) are derivatives of programming taught around a

coding framework. As discussed in ACM’s definition of computer science, the AP

Computer Science Exam does not address hardware design, networking, software

architectures, graphic systems, databases, computer security, logic, artificial intelligence,

and so on. None of this would be a problem if there were additional K-12 CS classes

introducing these tenets. However, since AP Computer Science is the only college-

supported CS class for K-12 schools and is introduced so late in a student’s academic

career, it reinforces misconceptions of what CS is and does not give the appropriate

support for students continuing to learn CS in college.

1.4.2 Drag Until You Drop

Some methods of initial CS instruction, particularly for younger students,

involves taking students from an integrated development environment and placing them

inside a virtual world to learn programming and its semantic concepts. According to

Carter (2006), the number one reason male students were interested in CS was the

prospect of developing computer games. Therefore, a large push by the CS community to

have prospective students be more excited about CS is to immediately give them the

ability to create interactive games using beginner-friendly tools.

Imagine taking a page of code from a program, translating the code into general

action and statement blocks, dragging these blocks into an organizational tower, and

www.manaraa.com

13

executing those blocks of actions one by one from the top down. This is what the

programming environment looks like in Scratch and it allows users to create their own

pieces of software including games. Scratch, designed by MIT primarily for children

aged 8 to 16, aims to provide a user-friendly, approachable way to program stories,

animations, and games. Scratch users see how different programming concepts are color-

coded into puzzle pieces that need to be correctly connected through dragging and

dropping instead of typing. Then, when the user hits the green “Play” button, they see

what blocks are being executed through highlighting. This workflow promotes imperative

programming-- there is literally a step-by-step execution of instructions. However, the

problems with CS education described earlier persist with this new form of syntax-less

programming, and this is shown through an experiment conducted by Meerbaum-Salant,

Armoni, and Ben-Ari.

 The goal of Meerbaum-Salant, etc. (2010) experiment was to investigate how

Scratch can accelerate the learning of CS concepts through its learn-by-making

constructivist philosophy. By testing forty-six students in two classrooms, the experiment

consisted of eleven conceptual CS chapters ranging from the theory of concurrency to

arrays and loops. Each chapter featured a Scratch project that students would work on

after brief instruction about a needed specific CS concept from the teacher. To evaluate

the results of their experiment, the group used three tests (pre, interim, and post). They

discovered that not many students could give an adequate explanation of basic CS

concepts such as initialization, loops, and variables. Only about half of the students

completely understood what concurrency entailed, and most used Scratch instead of CS

www.manaraa.com

14

terms to describe programming. Once again, disassociating CS from how it is harms

students’ construction of the material later in their academic lives and may deter any

long-term interest in CS (Meerbaum-Salant et al., 2013).

Cooper et al. (2003) performed an experiment using a virtual world to teach CS.

They aimed to teach CS to three introductory classes at Ithaca and John Hopkins

University with an objects-first approach rather than an example-based strategy where

simple example programs are shown off and then gradually turn into complex ones.

Instead of Scratch, they used a 3D virtual world called Alice where code is also generated

through a drag-and-drop editor. Once again, this eliminates the need for users to

understand and make use of the syntax-heavy structure of regular programming. After a

semester, they discovered that even though students had a strong understanding of objects

and their behaviors, they could not wrap their head around Java/C++ syntax. The authors

of this study argued that teaching this extra component of syntax would be easy.

However, students have already formed a misconception of CS once they constructed the

idea of CS around a graphical user interface instead of an integrated development

environment. Rather than being a simple transition, teaching these students the syntax

component of programming will be challenging because their mental understanding of

what CS was in the Alice projects would fight them throughout that process of knowledge

acquisition (Cooper et al., 2003).

The graphical drag-and-drop interface of introductory programming development

environments like Scratch and Alice are disrupting the way CS should be introduced.

Even though these applications are trying to show students that CS can be used to create

www.manaraa.com

15

extravagant worlds and games, they are also concealing the reality of what CS is. Imagine

teaching an English class using audio books instead of text. Despite giving those students

the ability to construct literary worlds and derive thematic meaning, it would be

extremely difficult for them to translate that knowledge into a well-written in-depth

literary analysis without deconstructing sentence structure and wordplay. CS needs to be

introduced with some level of programming syntax for students to construct a reasonable

initial image of CS to branch from.

1.4.3 Unplugging the Physical Barriers

In an effort to reach more students in economically impoverished areas or those

attending schools without available computers, an initiative by Canterbury University

called “Unplugged” aims to teach CS concepts through kinesthetic, physical activities

rather than through computer labs and textbooks (Bell et al., 2009). Because computers

are not involved, a majority of these concepts deal with hardware design or logistical

conundrums. For instance, to demonstrate deadlocking in an operating system, students

sit in a circle and pass fruits to students around until the fruit matches the student’s shirt.

This form of instruction promotes not only the realistic sense of social interaction that

occurs with CS, but also encourages the child to find solutions for themselves in a

constructivist way.

Lambert and Guiffre (2008) conducted a study testing the effectiveness of CS

Unplugged in elementary schools, more specifically three fourth grade classes. Being

able to target fourth graders allowed the pair to conduct their study on a “fresh” slate of

www.manaraa.com

16

students eager to acquire new knowledge. After three activities and weekly pre-tests and

post-tests evaluated on a five-point Likert scale, they discovered that students were more

interested in CS overall and had a higher cognitive competency level. In these instances,

computational thinking is being addressed despite a lack of programming and its syntax

(Lambert & Guiffre, 2009).

Even though CS Unplugged fills in the gaps of other CS instructional methods

through an overall depiction of the CS field, the lack of interactivity with a computer and

programming still hinders a student’s progress with CS similar to drag-and-drop

interfaces. Just like how a prospective chef needs to be in a kitchen handling cooking

utensils, a prospective CS student should be familiar with a lab environment dealing with

computers. Otherwise, their construction of CS is flawed. As Ben-Ari pointed out, CS is

not “...open to social negotiation” (Ben-Ari, 2001). A student cannot argue their stance on

the belief of CS because it has been well-established and proven in the world.

Consequently, there is a need to expose these K-12 students to the computer

environment; that is what CS thrives in. Otherwise, these K-12 students are not learning

CS correctly.

1.5 How Computer Science Should Be Taught

 There is not one way CS should be taught. The previous sections have identified

the problems with how CS is introduced and how it is currently being learned, but, just

like CS, there is not one solution to a problem. There are a multitude of teaching methods

to better shape the perceptions of CS with K-12 students and have them be immersed in

www.manaraa.com

17

the learning process; therefore, this section will delve into specific case studies of those

teaching styles and identify the key points that should be adopted. From digital gaming to

pair programming to adaptive learning environments, each of these studies cover a

variety of hands-on and unconventional practices educators have used to get more K-12

and college freshmen students involved with CS.

1.5.1 Implications of Gamification

 According to Hamari, Koivisto, & Sarsa (2014), gamification is “...the process of

enhancing services with (motivational) affordances in order to invoke gameful

experiences and further behavioral outcomes” (Hamari, Koivisto, & Sarsa, 2014). In their

analysis of this process, they have consolidated evidence that gamifying something

influences the participant psychologically in a way that keeps them engaged and

unfatigued. Unlike Scratch and other drag-and-drop tools that are explicitly

demonstrating CS through a user-friendly interface, gamification involves masking the

intent of CS through a game-like intermediary. The biggest difference is both forms’

processes of progression. Drag-and-drop tools motivate through accessibility and ease-of-

use while gamification motivates through mystery and prestige-- what will the next level

be like? Can I get the highest score? The gamification literature study has concluded that

gamifying does provide overall positive effects albeit with some caveats like making sure

the context being gamified is strong enough for it (Hamari et al., 2014).

Papastergiou (2007) put this gamification theory to the test by developing a video

game about system memory management using a game development tool called

www.manaraa.com

18

GameMaker. As the students progressed through chapters of a memory management unit,

they also progressed through stages of the game with increasing levels of difficulty. She

also exposed the same material to another class non-digitally and compared results of pre

and post tests. Ultimately, she discovered that digital-based game learning was both more

effective in reinforcing students’ knowledge with CS concepts and motivational in

capturing their interest. She also argues that this type of gamified learning beats

traditional forms of instruction because of the continued time of engagement and

enjoyment by students (Prensky & Prensky, 2007).

Gamification is a significant way younger children can get excited about CS in a

non-intimidating environment. Instead of dealing with the information directly through a

teacher, they can interact with an application that feeds this information at a speed that

fits with their learning pace. Additionally, subconsciously teaching advanced CS topics

through a game-like experience allows students to retain more information and feel

prepared when tackling more advanced CS topics (Hamari et al., 2014). However, there

are challenges with this type of approach. One of the biggest concerns Papastergiou has

with game-like learning is a student’s inclination to compare these gamification

techniques to existing ones in other mediums. For instance, good modern video games

have extraordinary graphics, alluring stories, and riveting gameplay and educational

games are not at that point to compete. Consequently, students may be disinterested with

playing a relatively sub-par game and be distracted with the game-like elements rather

than enhanced by them. Even though gamification of CS education is not completely

refined, it is a step in the right direction for introducing CS in an enticing manner.

www.manaraa.com

19

1.5.2 Active Teaching Methodology

 When students sit at a desk and listen to an instructor lecturing, they are passively

acquiring information. While this type of teaching method has been employed for

generations, the literature presented here exposes the drawbacks with teaching CS in this

way. Instead, teachers should put students in front of the steering wheel and driving their

own accrual of CS knowledge. By being active, the students oversee their own

understanding and cannot blame an external force for restricting their access of

information.

Much of this philosophy stems from Ben-Ari’s ideas of constructivism within CS

education. When teachers give students a conception of CS, they are being placed in a

world they constructed. However, Ben-Ari argues that CS cannot otherwise be

constructed without some guidance or first steps because a student begins with no

effective model for a computer and there is undeniable truth to how a computer is

designed and built that cannot be argued with. He suggests that if teachers hand students

nuggets of CS information, they will start to form their own edifice of CS (Ben-Ari,

2001). Additionally, misconceptions are exposed almost immediately with CS through

the process of debugging. As a result, CS is extremely feasible for this approach of active

learning.

Freeman, Eddy, etc. (2014) conducted a study where they meta-analyzed 225

studies that reported on their performance of STEM (science, technology, engineering,

and mathematics) examinations based on passive and active learning environments. They

discovered that examination performance increased by under half a standard deviation

www.manaraa.com

20

and “teaching-by-telling” increases failure rates by over fifty-five percent. Ultimately,

they concluded that a constructivist approach of “ask, don’t tell” leads to stronger student

ability in all STEM disciplines like CS and of all class sizes. They encourage more

classes revolve their design around students problem-solving in groups, conducting

interactive tutorial workshops, and gauging the progress of a class through peer-to-peer

guidance and response (Freeman et al., 2014).

One of the greatest ways teachers can teach CS actively is by encouraging more

socialization. As discussed previously, pair programming is becoming a rising new

collaborative technique in the software development world that has increased knowledge

retention by over 25% in CS classrooms (Williams et al., 2002). Using CS Unplugged

activities also engages multiple students in a cooperative manner to learn CS concepts.

The trouble that comes with this type of approach, however, is helping the teacher

enforce this learning methodology in a nonchaotic and practical way. Without guidance,

this type of constructivist approach to learning CS will not completely work.

1.5.3 A Guide for Teaching Teachers

 Guided or exogenous constructivism can fall apart when it is being helmed by the

wrong hands. Ben-Ari points out several key traits a teacher needs to have when teaching

CS through a constructivist philosophy (Ben-Ari, 2001). First, he wants teachers to

explicitly teach computer architecture like the CPU, HDDR, RAM, etc. Additionally, he

warns to not introduce abstraction immediately because students do not have the initial

framework for grasping underlying object-oriented principles. Above all, teachers should

www.manaraa.com

21

be receptive to students’ different constructions of CS and not punish conformity. Lastly,

they should approach CS instruction minimalistically and inject as many errors as

possible so students can start learning from follies rather than successes. As discussed

before, students need to build their own tools and not rely on another person’s ways of

solving a problem (Ben-Ari, 2001).

Carter (2006) also suggests her own guidelines for instructors when teaching CS.

She prioritizes formal CS education training for many K-12 teachers who plan to teach

the subject. If the teacher does not know the material as strongly as the students, then the

integrity of the knowledge will be compromised by the students. Additionally, she

proposes that there needs to be a fun aspect to learning CS. Teachers should relate CS to

its applications whether that be biological, architectural, or industrial and employ

activities that reinforce these applications. Not everything has to be directly related to a

computer (Ben-Ari, 2001).

Barr and Stephenson (2010) also explore how to prepare teachers to change the

current way they teach CS. They agree with Carter that teachers need to be professionally

taught and competent with CS through learning communities and peer summer summits

or workshops. Furthermore, they encourage the school administration to provide

resources for teachers like models and simulations, activities, and websites for students to

independently work on. Both Barr and Stephenson and O’Hara and Kay (2003) advocate

for the acquisition of open-source tools and software like GNU, BSD, and Ubuntu for

cheap alternatives to otherwise expensive CS learning tools (Barr & Stephenson, 2011),

(O'Hara & Kay, 2003).

www.manaraa.com

22

CS Unplugged (Bell et al., 2009) is another way teachers can expose students

through interactive social activities. The makers of CS Unplugged designed this learning

process around the idea of teachers being able to see a student’s face instead of the back

of a computer. They believe having greater interactivity between students and teachers

will encourage a greater sense of constructing a computer model. Some additional

recommendations they have for teachers is to focus on demonstrating CS concepts rather

than programming, make activities gender-neutral and involve engaging teamwork, and

encourage Socratic style questioning and probing. The more prepared a teacher is with

how to instruct students with CS, the better CS will stick with not only high school

students, but all K-12 schools.

1.5.4 Adaptive Learning Environments

 One of the main problems with the current way CS is being taught is how teachers

are applying the traditional question-answer classroom format to an inherently problem-

driven field. One alternative approach that has been widely implemented in other facets

of education for years has recently started being heavily applied to CS called adaptive

learning. A conglomeration of studies (Kerr, 2016; Seters et al., 2012; Hauger & Köck,

2007) all agree that adaptive learning is not where the student is adapting to the

instruction, but where the instruction is changing based on the learning style and habits of

the student. Seters et al. (2012) firmly assert that adaptive learning is beneficial because it

does not discriminate against a particular set of students. No matter how sub-optimally a

student is performing, an adaptive learning environment will conform to the students’

www.manaraa.com

23

abilities and present user-specific challenges at a reasonable and steady pace (Hauger &

Köck, 2007).

 Not only does an adaptive learning environment personalize a student’s learning

experience, but it also gives useful feedback to the student about their progress. With this

useful feedback, Seters et al. (2012) argue students will reach the ultimate learning goal

of self-regulated learning where a student is regulating and evaluating their learning

process to achieve goals they set out. Klasnja-Milicevic et al. (2011) performed a study

where they put students in both an adaptive and non-adaptive virtual learning

environment. They found that students in the adaptive learning environment continuously

completed more lessons successfully than students in the non-adaptive learning

environment. More than two-thirds of the students in the adaptive environment agreed

that in the age of huge information clusters, it was helpful to have a system that would

filter and sort through the data for them. Consequently, over 60% of adaptive learning

students were satisfied with their increased speed and accuracy.

 When it comes to CS, there have been a variety of adaptive e-learning

environments set up to take advantage of a “one server to many students” scenario of

instruction. One such example is iWeaver, a multidisciplinary research project aimed to

provide a flexible environment to the learner through “adaptive hypermedia techniques”

(Wolf, 2003). iWeaver and other implementations of adaptive e-learning environments

use the Felder-Silverman Learning Style Model (FSLSM) to concisely categorize the

various learning styles of a student (Carmona, Castillo, & Millán, (2007); Wolf, 2003;

Klasnja-Milicevic et al., 2011). In summary, they divide the student’s (1) processing, (2)

www.manaraa.com

24

perception, (3) input, and (4) understanding of material into a (1) active vs reflective, (2)

sensing vs intuitive, (3) visual vs verbal, and (4) sequential vs global relationship,

respectively. Additionally, they take the format of the multimedia combined with the

student’s rating of that media into account as well. In the end, the goal of the adaptive

learning environment is to take the learning style and multimedia format as inputs and

then output the probability that the learning object is appropriate for the user (Carmona et

al., 2007). Essentially, the higher the probability, the more likely that learning object will

be given to that student. In the case of iWeaver, hyperlinks to resources were disabled to

prevent unprepared users from progressing too rapidly through the program (Wolf, 2003).

 Let us assess how an adaptive learning environment will react to the following

high-level example. For instance, a student selects, twice in a row, learning materials that

have an extensive number of images inside. As a result, their probability of selecting an

image the next time will be higher than a text-filled document. The learning environment

will make a judgement that there is a high chance the student is a visual learner who

struggles with reading extensive amounts of text. When they finish looking at the image,

the next item that will be suggested to the student will involve an image. However, if the

student rates the previous image poorly when asked, the probability of an image

appearing slightly decreases because the system weighs the fact that the student chose it

beforehand more than his low rating score of the image. The driving factor behind how

the learning environment knows is through a machine learning algorithm known as a

Bayesian network (Carmona, Castillo, & Millán, 2008). A similar approach was taken

www.manaraa.com

25

when designing System Dot. The architecture of System Dot’s adaptive system will be

discussed later.

1.6 Summary

In order to overcome the deficit of programmers in the American workforce,

schools need to expose more students to CS in K-12 schools in the right way. Prospective

college students not only have a negative perception of CS, they do not even know what

the field entails. Our current educational system has hidden CS behind a door only a

select number of white male students have the privilege of opening for no reason other

than a lack of knowing how to teach CS. As a result, they tend to associate CS with

mathematics and teach it in that way. Unfortunately, mathematical teaching principles

like “plug-and-chug” do not nicely transfer to CS. Perhaps the reason why most teachers

are CS-deficient is because most CS college graduates tend to pursue more fruitful

careers in the software industry than face an uphill battle in a high school classroom.

Nonetheless, most of the problem rests with the lack of proper combination of

computer concepts and programming. Whether it becomes the syntax-less drag-and-drop

applications like Scratch or the syntax-ful curriculums like the College Board’s AP

Computer Science Exam, there has yet to be a perfect middle ground for teaching CS.

www.manaraa.com

26

1.7 The Relevance and Rationale Behind System Dot

That is where System Dot comes in. System Dot aims to find that perfect harmony

between computer architecture concepts and programming by placing the player literally

in a computer. Not only do players explore the basics of computer architecture in a fun

and engaging way, but they also observe the underlying code governing the world they

inhabit. For example, seeing a while loop on a blank white canvas in an integrated

development environment conveys nothing about its capabilities. However, running into

a factory crushing machine that won’t stop smashing victims below it without altering its

internal while loop provides a visual manifestation of what a loop actually does. CS

Unplugged conveys the importance of visualizing how a computer fundamentally works,

and what better way to do so than through a virtual world.

System Dot does not pioneer the virtual world space when it comes to education in

computer science. There has been an influx of software the past five years that harnesses

the procedural way of thinking when it comes to programming such as Scratch1 or The

Foos2. However, they use a drag-and-drop interface for user execution of actions and

behaviors. As discussed beforehand, these drag-and-drop interfaces do more harm than

good to a student’s construction of the computer science field. System Dot takes that into

mind by exposing the player to actual code. A virtual world allows the player to be

immersed in an environment brimming with mystery and adventure, but then have

1 https://scratch.mit.edu/
2 http://thefoos.com/

https://scratch.mit.edu/
http://thefoos.com/

www.manaraa.com

27

computer science principles integrated seamlessly in the surroundings (as illustrated with

the factory crusher machine example above).

Virtual worlds not only offer the tools for students to get immersed in a learning

environment, but they also let students set their own pace when learning. For instance, a

user cannot access the level filled with conditional statements until they beat the zone

testing for data types and objects. Like math, future programming principles rely on the

comprehension of past programming concepts and a virtual world prohibits users from

progressing too rapidly through significant topics. Furthermore, System Dot also assesses

the player’s learning style in an effort to adapt to their play style in the future through

personalized feedback. The construction of the virtual world’s learning style

classification system will be described extensively later, but in short, a machine learning

algorithm takes in player heuristics such as number of syntax errors, objects “hacked”,

and keystrokes and appropriately classifies the player on the Felder-Silverman Learning

Style Model through a dynamic Bayesian network.

As many education researchers have stressed, teachers need to give students a

perfect construction of what CS entails. If teachers avoid programming and jump right

into computer architecture and binary arithmetic, they are not directly exposing the

student to its application. However, if teachers only show a student programming, they

may get lost and give up when they are introduced with the other facets of CS. System

Dot sets out to be the perfect middle ground--it exposes students to both programming

principles and computer architecture. Once the student reaches the end of System Dot,

www.manaraa.com

28

they should have an appropriate grasp of CS and not be surprised when they reach

college or the professional industry.

1.7.1 Goals of the Thesis Study

 System Dot was started as an undergraduate Honor’s thesis project by Grant West

and me involving only the first level and boss as a proof of concept (Kury & West, 2016).

We had set out to demonstrate that thrusting a student into a virtual world replicated a

problem-driven teaching style that would reap better retention and learning results than a

traditional teaching style. User testing outcomes of the project were positive-- most

students reported enjoying the game immensely and wanting to play a completed

version...even though they had minimal programming experience or interest in video

games.

This current thesis greatly expands on the scope and aims of the earlier project by

completing the game with four levels and a computer-centric, engaging plot. More

importantly this thesis, steps were taken to implement an adaptive component to the game

by constructing a way for the virtual world to classify how a player learns throughout

their play session. Therefore, another goal of this thesis study is to walk through the

implementation and user testing of this classification system and provide an exploratory

analysis of the data gathered from users of the updated game focusing on its potential use

with an adaptive feedback component in the future, along with initial qualitative feedback

from users on the game itself.

www.manaraa.com

29

2. VIRTUAL WORLD DESIGN AND FLOW

 In order to demonstrate how the virtual world implements the learning theories

and methodologies discussed in the previous sections, most of this design section

replicates and/or updates material from the earlier Honor’s thesis by Grant West and me.

An extension has been added detailing how later levels and progression continue to

conform to this implementation method (Kury & West, 2016).

2.1 A Problem-Driven Approach

System Dot deals with four programming areas-- (1) output systems and basic

syntax; (2) data types, objects, and boolean logic; (3) conditional statements; (4) and

loops. Consequently, the virtual world is divided into four levels with each level dealing

with one of the major programming topics. Each of these levels are further divided into

four segments that facilitate a Socratic-like learning environment. These segments

include (1) a tutorial, (2) a traversal of a fully functioning environment, (3) the

introduction of faults, and (4) an assessment. This type of learning environment is

problem-driven in nature-- the player is exposed to basic knowledge of a topic and then is

thrust into a problem with minimal or no prior instruction or guidance. Depending on

how they perform, the virtual world will assist accordingly, but the problem-driven

approach still remains the focus. In order to understand this learning flow in the game, let

us analyze the first level dealing with output systems and basic syntax.

www.manaraa.com

30

2.2 Tutorial

The player enters the world with a blue monitor hovering right beside them (see

Figure 2.1). The monitor introduces itself as IntelliSense, or IS for short. Thrusting the

player right into the action of the game allows the game to approach the player with a

constructivist frame of mind. As discussed beforehand, constructivism is the theory of

learning where people form their own understanding of a world based on their

experiences and interactions with the objects around them (Hein, 2016). In System Dot,

each level slowly introduces the player to new concepts and ideas through never-before-

seen enemies and programming syntax. Through this guided constructivist approach, the

virtual world takes advantage of the theory of cognitive apprenticeship to help the player

or learner construct their own understanding of the world around them with the guidance

of IntelliSense. The theory of cognitive apprenticeship says that people tend to learn from

one another through techniques like observation and coaching [Collins et al]. IntelliSense

primarily employs the exploration approach to apprenticeship, which is the approach that

gives players room to problem solve independently while mentioning strategies of how to

approach various problems (Collins et al., n.d.). Despite IntelliSense’s condescending

tone, his overall demeanor can be related to a friend who is annoyed by the player’s

presence. It is through this annoyance that players will naturally strive to seek his

direction throughout the game.

In order to allow the player to feel like they are this green character on the screen,

IntelliSense prompts for their name. This name will be saved for future story elements

and will help the player feel like their playthrough is a unique experience.

www.manaraa.com

31

Figure 2.1: Interaction between Player and IntelliSense

Every short tutorial section will progress the plot of the game, which is the escape

of the player from a computer in which they are trapped. Situating players inside a

computer gives ample opportunities to not only briefly explore computer architecture, but

also puts the player in the learning context of computer science. For instance, IntelliSense

accuses the player of being a virus because it cannot identify them in the system (akin to

how a virus acts in a real computer). After the player provides identification and verifies

to IntelliSense that they are not a virus, the objective in the first level is to escort

IntelliSense to the CPU. Later in the level, players will encounter “caches” that contain

bits of information that “give the CPU intel about processes” in the system (see Figure 5).

This is exactly how real caches work in computer architecture and having a visual

www.manaraa.com

32

manifestation of this real-world application can help solidify that knowledge.

Additionally, the idea that caches resemble chests in-game allows players to associate

them with treasure or goods and feel like they are rewarded for finding them. System Dot

already addresses the problem of current computer science education by exposing the

player to both coding and computer architecture. As a result, players will construct a

greater understanding of what the computer science field involves.

Figure 2.2: IntelliSense Providing Information about Caches

Lastly, the short tutorial segment of a level provides a brief moment of exogenous

constructivism with direct instruction by IntelliSense. Exogenous constructivism is a

subset of general constructivism distinguished by David Moshman (1982) that specifies

that players construct the world around them directly from the environment and objects

themselves. In other words, players’ interactions with objects clarify certain features in

the learning environment. In System Dot, whenever the player confronts an unknown/new

entity, IntelliSense steps in to assess the situation through his condescending humor. In

www.manaraa.com

33

one instance of the first level, the player confronts a “black VBot”, an enemy they have

never encountered before. IntelliSense immediately tells the player to “hack it”. Through

the player’s interaction with the “black VBot” object, they have further constructed a

perception about the virtual world where all abnormal future objects they will see can be

hacked.

Figure 2.3: IntelliSense Teaching the Player to Hack

 Once the player clicks on the object, IntelliSense introduces the “API”, a glossary

of code that will assist players with syntax. Now, it becomes as simple as finding the

www.manaraa.com

34

difference between the black VBot’s code and the correct API code. Once the player

solves the problem, IntelliSense will congratulate them and verbally affirm their actions.

A series of these types of short tutorials will allow the player to smoothly transition to a

fully functioning environment.

Figure 2.4: A Look at the In-Game API

www.manaraa.com

35

2.3 Traversal of Fully Functioning Environment

Figure 2.5: Observing objects with legacy code in a fully functioning environment

 After the tutorial, the player views a fully functioning environment-- objects have

correct syntax and appropriate behavior in the world. In these segments, players can

either (1) safely explore their surroundings, hacking objects out of curiosity and

observing how the code works or (2) battle/exploit objects to solve puzzles and progress

through the level without pausing to hack code, but doing it because they want to. Having

this chance to learn about correct programming principles by observing them in

analogous scenarios allows the player to be situated in a computational thinking

environment.

www.manaraa.com

36

 For instance, in the first level, immediately after the tutorial, the player can

progress without ever hacking code, but seeing the code that they learned in the tutorial

being put to action. After IntelliSense has the user hack the first enemy’s code and view

why it is blue, the player will then encounter other enemies of color (green and red)

without going through a similar tutorial. The virtual world applies the knowledge the

player has been exposed to from before with IntelliSense and has the player directly

interact with that knowledge. On top of that, “termination boots” have also been

introduced to the player, which is a combat mechanic where the player can step on

objects of equal color to the boots and destroy them. The boots can be toggled between

red, blue, and green by pressing the Q key. The color scheme was chosen because it is

reflective of the standard color model in most computers (RGB). For instance, when the

player encounters the blue VBot, IntelliSense mentions the functionality of the boots and

how it can kill enemies of equal color. The player can further put this to action by

defeating red and green VBots. The introduction of “legacy code”, which are red snippets

of code in a terminal window of an enemy that cannot be modified by the player, allows

the virtual world to display exemplary pieces of code that the player can refer to in future

puzzle scenarios.

www.manaraa.com

37

2.4 Introduction of Faults

 In the case of introducing faults, this segment expands the player’s knowledge

about what they learned in the tutorial and fully-functioning traversal segments by

applying it to similar but new scenarios. Unlike the tutorial section, this part of the level

will have an endogenous constructivist approach, which is the opposite of exogenous

constructivism. In endogenous constructivism, people construct the world around them

from within rather than from external objects and environment (Wiebell, 2011). In these

moments of the System Dot level, the player will not be guided or handheld by anyone

and will have full freedom constructing their own view of the world around them.

 In the first level, this can be directly seen with the narrow tunnel proceeding the

moving platform tutorial section. In the area before this narrow hallway, the player is

introduced to the code that allows an object to move left or right. Once they pass this

tutorial by standing on moving platforms to bypass pits of spikes, they will be confronted

with an enemy blocking the path. The player cannot skip the enemy because there is no

space above or below for the player to slip through. The player also cannot defeat the

enemy because the narrowness of the hallway prevents the player from jumping. In all

cases, the enemy acts like a boulder blocking the player from continuing their journey

through the level. Additionally, IntelliSense does not appear to help the player through

this puzzle.

www.manaraa.com

38

Figure 2.6: Thinking Creatively about Solutions to Puzzles

 There is a fault in the world-- the enemy prevents the player from progressing

because the source code of the object does not have the correct computational code to let

the player through. However, through the previous tutorial section and viewing fully

functional code of moving objects, the player will be able to apply this newfound piece of

code to the existing enemy blocking the path (even though it does not look like a platform

that can move). Not only will this give a sense of self-confidence and accomplishment

within the player, but it will also reveal that any object can be affected by any piece of

behavioral code (all while not directly telling the player). This sort of revelation will stick

with the player longer because of independent discovery rather than a forced mentioning

by IntelliSense.

www.manaraa.com

39

2.5 Assessment

 In order to ensure that the player adequately understands all the elements taught in

the level they just played, there will be a final assessment or test in the form of a boss

battle at the end of each level. The player cannot progress through the game without

vanquishing each level’s boss, which will be a culmination of everything the player has

learned in that level.

 Let us explore all the gameplay mechanics the player has learned in the first level

and then see how these mechanics are reinforced and assessed in the first level’s boss. In

order of progressing the first level, the player learns:

A. Movement (including jumping and double-jumping)

B. The purpose of termination boots (terminating objects of equal color)

C. How to hack an object by clicking on it

D. How to type code into the terminal code and execute it by clicking the green

debug button

E. How to change non-colored objects into colored objects using System.body

F. How to move platforms using System.move

 The first boss in the first level, “Binapede”, is designed around the Atari game

Centipede. A huge snake-like creature will start at the top of the screen and slowly make

its way downward to strike the player. Each component of its body looks like the

spherical VBot; it is hackable and has a color (red, blue, or green) associated with it. As

each component of its body slowly makes its way downward towards the player, the head

of the Binapede shoots spikes at the player that they will need to dodge. Additionally,

www.manaraa.com

40

there are spiky moving platform objects along the sides of the walls for the player to take

advantage of to make the fight easier; they can hack them to pierce each segment of the

boss. If the player does decide to wait for the body parts to reach them, they can jump on

them with a specific boot color to terminate them like they have with VBots in the first

level.

As each part of the boss’s body gets killed, its overall health goes down (shown in

the bottom-left corner of the screen) and more pieces of its body appears at the top of the

screen again to slowly make its way towards the player. The closer the Binapede is

towards death, the faster it moves towards the player, the more spikes Binapede’s head

will shoot out, and the more ambiguous its body parts will be. What ambiguity means in

this case is that some body parts will be the color gray and it is the responsibility of the

player to hack and fix that.

Figure 2.7: Binapede Boss Fight

www.manaraa.com

41

 Let us delve into how each of the topics the players learned in the level

beforehand are assessed in this boss battle:

A. Movement is incredibly important when facing Binapede. In order to dodge his

spike attacks, the player needs to press “A” or “D” to get under the floating

blocks. When the body parts reach the bottom of the screen and start traversing

the first floor, the player needs to press “W” once or twice to get up on a floating

platform to dodge it. Quite frankly, if the player does not know how to move their

character, they should not have reached this point to begin with.

B. Due to how far away the player is from the camera, the color of their boot is

represented as a huge boot icon on the left-hand side of the screen. When the

player sees the circular body pieces of Binapede, the intention is that the player

will translate this entity as a terminatable object with their corresponding boot

color. There is no other way for the player to defeat the body parts of Binapede

without jumping on them with equal boot color when they reach the bottom floor

of the arena.

www.manaraa.com

42

Figure 2.8: Vanquishing Binapede through Jumping

C. Like almost every object in System Dot, the player can click on any object with

their mouse and see their internal source code. Likewise, when facing Binapede,

the player can click on any component of the boss’s body and see the code driving

it. For instance, clicking on a red body piece will expose

System.body(Color.RED); to the player in a legacy code format (red text color and

uneditable). To prevent the player from hacking Binapede’s head, which is the

main driving force behind the boss’s actions, there is a legacy, red-colored

comment saying //<- KILL KILL KILL -> to let the player know that it is

unhackable and programmed to destroy. Clicking on already colored objects may

not be necessary to defeat the boss, but it does give context to the player and

continues to construct the computing world around them. Later on in the level

www.manaraa.com

43

though, player will need to use their knowledge of clicking in order to hack gray

objects into colored ones.

D. As stated before, there are some objects that are modifiable and can be hacked by

the player (i.e. gray body parts or moving platforms). Therefore, the player is

expected to take their knowledge of being able to modify the terminal window

and apply it to those instances.

E. Gray body parts will begin to appear when Binapede’s health reaches closer to

zero. Similar to how black VBots told the player that they needed to hack them in

order to reveal their true color, the hope is that players will associate a

discoloration with the body part as a need to hack it. Once they do, the player can

type in any System.body command in order to expose its color. Therefore, by the

time the body part reaches the player, they will have a boot color that will

terminate it.

www.manaraa.com

44

Figure 2.9: The Necessity to Hack during Binapede’s Boss Fight

F. Similar to seeing a discoloration of body parts, the construction zone pattern on a

platform will signal the player to investigate it by clicking on it. Once they do,

they can move the spiky platform left or right and time them to pierce Binapede’s

body parts and reduce the amount of body parts the player needs to stomp on.

This action is not totally necessary to defeating the boss, but it gives players an

extra bonus for remembering all the different System commands.

www.manaraa.com

45

Figure 2.10: Using Movement Commands in Binapede’s Boss Fight

 In the end, the introduction of boss fights will be a fun way to assess the player’s

knowledge of programming concepts they have learned in the zone prior. The bosses

have been designed in such a way where it becomes vital for the player to combine all the

skills gained beforehand in order to vanquish a threatening enemy.

2.6 The CPU (Incentivisation)

Every good game needs to provide the player with some incentive to continue to

play. This can be seen in modern games that offer cosmetic unlocks to further customize

the player’s in-game avatar or with leaderboards that display the player’s score, which

encourages them to continue playing in order to beat their old record. In System Dot, the

incentive for the player to keep exploring the virtual world is through purchasing

gameplay supplements and cosmetics from the RAM (Resource Acquisition Market).

www.manaraa.com

46

Throughout the game

the player will receive the

in-game currency, bits, by

opening caches described

before or finding them

floating around in the level.

For the ease of the player,

bits are magnetized to the

player when they are nearby.

Therefore, when the they open a cache, all the bits will be absorbed by the player and

make a satisfying “ding” sound. This euphoric moment will encourage the player to

collect bits anywhere they go, which means they will go above and beyond traversing the

world to find them. Additionally, bits can be used to guide players through certain parts

of the level. For instance, if there are a conglomeration of bits on a certain platform, then

the player will feel obligated to collect them and jump on that platform. If they see a path

of bits, they will tend to follow the path to collect them. A combination of these different

level design techniques gives an endogenous constructivist approach when the player

traverses the world. They are not necessarily explicitly being told where to go, but the

world around them slowly nudges them in the right direction through the placement of

bits.

The player’s current bit wallet is displayed, in decimal, at the bottom right hand

corner of the screen along with other player stats such as health and armor. If the player

Figure 2.11: Player Absorbing Bits

www.manaraa.com

47

hovers the mouse over the decimal value of their current bits, the value is converted to

and displayed in binary. When the mouse is not over the field, then it goes back to

decimal. This subtle feature will help the player slowly learn how the world of computing

is infused with a binary numerical format and continue to construct this perception

around them. This feature will not necessarily teach players how to convert between

binary and decimal numbers, but will inspire them to pursue avenues where they can.

Figure 2.12:

Converting from Decimal to Binary through Bits

The Resource Acquisition Market (RAM) is located in the Central Public Union

(CPU) of the game. While this is not necessarily indicative of modern computer

architecture, it does give some insight to the player about how the CPU and RAM work

www.manaraa.com

48

closely together. Additionally, introducing the player to terms like CPU and RAM while

not precisely using them in the context of actual computing continue to construct a

computing world around them. For instance, the way the player purchases items from the

RAM is to give bits of memory to it (which is the in-game currency the player has

collected throughout their journey). This is similar to how actual RAM works-- it

relinquishes and acquires memory.

Figure 2.13: A Look at the RAM Shop

 When the player visits the market, they have access to several different items in

the game, including health, revival kits, armor, and cosmetics. The health and armor

serve to make the player’s progression through the levels easier while the cosmetic items

www.manaraa.com

49

are the key to incentivizing the player to continue playing the game. Through this

mechanism we hope to keep players returning to the game to learn and have fun.

2.7 The Instructional Flow Beyond the First Level

 As expressed throughout the dissection of the first level, the goal of System Dot is

to properly convey the field of computer science by combining visual manifestations of

programming concepts and the context of computer architecture and its basic

functionality. The dissection of the first level and CPU from the Honor’s thesis briefly

convey the design decisions taken to accomplish that goal, but let us quickly highlight

aspects of other levels that continue to demonstrate this constructivist approach.

The whole objective of the player is to figure out why they are stuck in a

computer and how to escape. In the first level, IntelliSense says it can help but that

players need to reach the CPU first. When the player does reach the CPU, they are shown

the basic hierarchy of an operating system. IntelliSense explains that they are in the

system sector right now and they need to reach the kernel by taking a “Data Link” from

the “Transport Layer”. In the game, the transport layer looks like a train station and the

data link is a train. To leave the CPU, the player will need to board the train. Once they

do, a cinematic ensues. In the cinematic, the player rides the train until a hiccup occurs

and the whole “data transfer” explodes, similar to how an interruption works in an actual

computer. Getting to the kernel and out of the computer could not be that easy…

www.manaraa.com

50

Figure 2.14: The System Map

 The player and IntelliSense awaken to find Auddreyss, an engineering process

that appears to know what is going on. In this interaction, the player discovers that they

are the owner of the computer they are trapped in and because the owner/player is not in

the real world to maintain the computer, the system has been breached by a virus. Now,

the objective of leaving the computer becomes as prominent as ever. Before the player

can leave this level, though, Auddreyss reveals that it is also in charge of an address table

(a gated enclosure) that needs its “variabulls” back (a pun on “variables”). The player’s

mission is to find the variabulls scattered throughout the level and deliver them back to

www.manaraa.com

51

the address table. This is exactly how data assignment and types work in a computer--

variables are allocated onto stack memory via an address table. Once the player finds a

variabull, they will introduce themselves in a quirky fashion indicative of the data type

they represent (i.e. the sesquipedalian nature of the string variable or the statistics-driven

double variable). They will also introduce their name and the value their holding and then

display that to the user in the terminal window. Once again, visualizing the computational

thinking behind the purpose for these data structures in computer science allows the

player to better understand its function. For instance, integers are depicted by powering

up activation units that require a certain finite amount of power; doubles are dealt with

rotating actual objects-- .5 would be half a rotation while 1 would be full; strings are used

to manipulate “word blocks” that obstruct the player’s path; and booleans power up

“gates” that open doors like an on-off switch. After completing the second level, the

player is taken to the second boss named “Virus” who combines all the knowledge

learned previously.

 After defeating the “Virus”, something strange happens. A black hole suddenly

erupts from the middle of the arena and starts absorbing game objects, including the

player. Unfortunately, IntelliSense gets sucked in almost immediately. This is intended to

not only shock the player, but prepare them for future levels without focused guidance or

help. The system has crashed. When the player gets absorbed by the black hole, the third

level begins.

www.manaraa.com

52

Figure 2.15: Conditional Statements Mapped to Pipes

The player wakes up again to find a strange “?” object hovering over them.

Apparently, the system crash has thrown the player down into the recesses of the system

memory known as the “nullsphere”. In order to demonstrate the computational meaning

behind conditionals, the virtual world introduces the “pipe” mechanic, a method of

transportation that locks the player into a certain movement pattern based on the

directional arrows. The multiple paths of the pipes mimic a conditional statement; one

path represents the “true branch” while another may represent the “false branch” of a

conditional statement. The player is also introduced to the system distance command

www.manaraa.com

53

(System.distance(obj)) that returns a numerical value denoting how far apart that object is

from the one in the command’s parameter. A pink line connects the two to avoid

confusion with the player. None of this is explicitly defined by the floating “?”; all it

wants to do is leave this area. In order to escape the “nullsphere”, all the viruses in the

level need to be cleansed by external methods only. These external methods involve a

review of past subject matter like moving objects with System.move() or rotating objects

with System.rotate(). At certain intervals (i.e. when the player has killed eleven viruses

or if there is only one remaining), the “?” character will encourage the player to keep

going, but not give them any hints or solutions to solving the level.

After defeating all the viruses, the player can ascend to the boss of the level--

“Malrus”. There is no way for the player to use their termination boots to damage the

boss. The only way to do so is to use the boss’s attacks against it through pipes. The

gimmick behind the boss’s attack pattern is that it will rain down balls ridden with spikes

that hold a numeric value. There are also platforms scattered throughout the arena that

hold conditional statements similar to the ones encountered by the players in the pipe

section. Once the number ball touches one of the platforms, its value is evaluated by the

condition on the platform and will tilt either left if the condition is false or right if it is

true. The ball then drops into a pipe that leads to an area right above the pipe entrance.

The goal is for the player to drop this ball right on the boss, damaging it. This boss fight

not only strengthens the purpose of conditional statements, but the ability to write them

since some platforms will need to be filled in.

www.manaraa.com

54

After defeating the third boss, the player is led to the final level revolving around

loops. After exploring a bit, the player finds a corrupted IntelliSense incapable of

speaking or moving. The goal in this level is to escort IntelliSense to charging pads that

reinvigorate the process and reboot the IntelliSense program. In order to do so, the player

will need to press the “forward” or “pause” button to cause the defunct guide to move to

the right or stop abruptly. Meanwhile, the player will encounter enemies that have unique

attributes. For instance, as illustrated before in the Relevance and Rationale Behind

System Dot section, there is an enemy that continuously smashes the ground, preventing

the player from progressing. After hacking the object, they notice an infinite while loop

with a condition of “true”. Simply changing this condition to false (the only other option

the player can make) will cause the loop to stop executing and the enemy from smashing.

Existing enemies now have new attributes; they vibrantly change color every few

seconds. When the player hacks the code, they will discover that this is caused by an

infinite loop transitioning between colors using the new System.wait() command. To

demonstrate a for-loop, a new “Spawner” enemy can emit objects based on the parameter

in the for loop. Its source code involves a System.output() command that is repeatedly

being called by the bounds of the for-loop. When the player sees the number of objects

spawning based on the number in the bounds for the for-loop, they should be able to

associate it to the number of times the loop executes. Once again, these are some of the

ways programming concepts are infused with the gameplay style of System Dot.

www.manaraa.com

55

2.8 Summary

 A virtual world allows for a natural progression of programming concepts through

a problem-driven learning environment. By exposing the problem first and then guiding

them implicitly to the solution, the player starts to become a tool-builder instead of a tool-

user. To summarize, here is a breakdown of the instructional goals and main tasks for

each level:

Table 2.1: Virtual World Design Breakdown

Level Name Instructional Goals Main Tasks

1: Compiler Shire - Introduce controls and

combat of the game

- Expose simple custom

language syntax

- Reveal use of the API

- Hack objects through terminal

window

- Use System.body commands

to defeat enemies

- Use System.move commands

to manipulate obstacles

2: Enumeration

Station

- Run through

instantiation of variables

- Use variables

corresponding to the

following data types:

o Integers

o Doubles

o Strings

o Booleans

- Rescue the four “variabulls”

and return them to their

address table (each modelled

after a different data type)

- Use System.activate to

manipulate power lines with

integer values

- Use System.rotate to rotate

objects with double values

- Use System.body and

System.delete to fill in and

cross word blocks with strings

- Use substring method to

dissect strings into chunks to

bypass obstacles

- Use System.output to play

with power gates and activate

certain doors with booleans

www.manaraa.com

56

3: Nullsphere - Understand boolean

logic and its use in

conditional statements

- Recognize the syntax of

an if-else statement, if-

elseif-else statement, and

nested conditional

statements

- Follow the flow of a

conditional statement

and its purpose in

computing

- Eliminate 21 viruses scattered

throughout the level using

other objects (level can be

roamed freely)

- Use System.distance

command to evaluate

conditional through in-game

metrics like distance from

player to an object

- Ride pipes to progress

through the level; branches in

the pipe will follow the flow

of the conditional statement

4: Precipice of

Memory

- Understand the syntax of

a while and for loop

- Comprehend the

computational logic

behind the flow of a loop

- Escort a corrupt IntelliSense

to charging stations littered

throughout the level

- Bypass objects with infinite

loops (including nonstop

crushing machines, enemies

changing colors periodically,

and objects that follow the

player within a certain

proximity)

- Destroy “Spawners” that

spawn enemies at a rate

corresponding to the bounds

of their for loop

www.manaraa.com

57

3. TECHNICAL DESCRIPTION

 The technical foundation of System Dot fosters the learning theories and design of

the virtual world described beforehand. The virtual world was designed with the Unity

5.5 game engine (www.unity3d.com) and the C# programming language. Unity3D is

used both commercially and in the industry as an intuitive way to make 2D and 3D

virtual simulations and games. System Dot is a 2D game because the genre can be used to

emphasize gameplay mechanics rather than visuals. Additionally, having one less plane

to manipulate eases new gamers and reduces the complexity of the problems introduced.

Since this thesis is an extension of my Honor’s thesis, more emphasis will be placed in

the integration of the learning theories and learning style classification system over

specific code and game systems. For an in-depth look at how the game functions

systematically, please refer to my Honor’s thesis (Kury & West, 2016)

.

Figure 3.1: A Look at the Unity Environment

http://www.unity3d.com/

www.manaraa.com

58

3.1 Custom Parser

 The custom parser is what distinguishes System Dot from other virtual

worlds/video games that teach programming. For instance, unlike CodeCombat or

CodeAcademy, which asks the user for a specific segment of code from a list and will not

execute unless that code is entered, System Dot gives players the freedom to write

whatever they want and see their creations come to life. Instead of writing the same lines

of code over and over again to reinforce programming principles in other instructional

programming software, the player in System Dot can write the same code in a variety of

ways and see how those different ways affect the behavior of the object they are

modifying. Once again, this amount of liberty is what will cause players to continue

playing; they have no bounds on their creativity other than the locations of the game

objects in the game world.

 The custom parser can handle the following programming principles:

- Built-in commands like System.body(Color.BLUE);

- Commenting such as // This is a comment

- Data Types like integers, doubles, booleans, and strings (i.e. int x = 4;)

- Object methods like substring and length of a string

- Basic arithmetic

- Type casting like int y = 2; float x = y; (x = 2.0)

- Type checking like boolean x = 2; would return an error

- Boolean logic like true && false || false would return false

- Full conditionals with if(...) { … } else if (...) { … } else { … }

www.manaraa.com

59

- Nested conditionals

- While loops

- For loops

- Error handling like int x = 2 would return “missing semicolon on line 1”

 Consequently, the custom language governing the parser can be expressed by the

following context-free grammar:

[1] program -> stmt_list | Є

[2] stmt_list -> stmt stmt_list | stmt

[3] stmt -> assign_stmt | while_stmt | if_stmt

 stmt -> for_stmt | sys_stmt | comment_stmt

[4] type_name -> INT | DOUBLE | BOOLEAN | STRING

[5] assign_stmt -> type_name ID EQUAL numExpr SEMICOLON

 assign_stmt -> type_name ID EQUAL strExpr SEMICOLON

 assign_stmt -> type_name ID EQUAL boolExpr SEMICOLON

[6] while_stmt -> WHILE condition body

[7] if_stmt -> IF condition body elseif_stmt else_stmt | Є

[8] elseif_stmt -> ELSEIF condition body elseif_stmt | Є

[9] else_stmt -> ELSE body | Є

[10] for_stmt -> FOR for_cond_stmt body

[11] numExpr -> numTerm (PLUS | MINUS) numExpr

numExpr -> numTerm

[12] numTerm -> numFactor (MULT | DIV | MOD) numTerm

 numTerm -> numFactor

[13] numFactor -> LPAREN numExpr RPAREN | NUM | REALNUM | ID

[14] strExpr -> (QUOTE ID QUOTE | DOUBLEQUOTE)

 strExpr -> strExpr PLUS strExpr

[15] boolExpr -> TRUE | FALSE | LPAREN boolExpr RPAREN

 boolExpr -> boolExpr (AND | OR) boolExpr

[16] condition -> LPAREN (ID | condExpr) RPAREN

[17] condExpr -> primary relop primary

[18] primary -> ID | NUM | REALNUM | TRUE | FALSE

www.manaraa.com

60

[19] relop -> GREATER | GTEQ | LESS | LTEQ | NOTEQUAL

 relop -> EQUALEQUAL

[20] body -> LBRACE stmt_list RBRACE

[21] for_cond_stmt -> LPAREN assign_stmt SEMICOLON condExpr

[22] sys_stmt -> SYSTEM DOT jump_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT body_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT open_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT close_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT move_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT check_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT output_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT wait_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT smash_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT gravity_stmt SEMICOLON

 sys_stmt -> SYSTEM DOT activate_stmt SEMICOLON

sys_stmt -> SYSTEM DOT rotate_stmt SEMICOLON

sys_stmt -> SYSTEM DOT delete_stmt SEMICOLON

sys_stmt -> SYSTEM DOT distance_stmt SEMICOLON

[23] jump_stmt -> JUMP LPAREN RPAREN

[24] body_stmt -> BODY LPAREN COLOR DOT BLUE RPAREN

body_stmt -> BODY LPAREN COLOR DOT GREEN RPAREN

body_stmt -> BODY LPAREN COLOR DOT RED RPAREN

body_stmt -> BODY LPAREN COLOR DOT BLACK RPAREN

[25] open_stmt -> OPEN LPAREN RPAREN

[26] close_stmt -> CLOSE LPAREN RPAREN

[27] move_stmt -> MOVE LPAREN DIRECTION DOT RIGHT RPAREN

 move_stmt -> MOVE LPAREN DIRECTION DOT LEFT RPAREN

[28] check_stmt -> CHECK LPAREN ID RPAREN

[29] output_stmt -> OUTPUT LPAREN ID RPAREN

[30] wait_stmt -> WAIT LPAREN (NUM | REALNUM) RPAREN

[31] comment_stmt -> DOUBLESLASH <characters> NEWLINE (\n)

[32] smash_stmt -> SMASH LPAREN RPAREN

[33] gravity_stmt -> GRAVITY LPAREN (TRUE | FALSE | ID) RPAREN

[34] activate_stmt -> ACTIVATE LPAREN (NUM | REALNUM | ID) RPAREN

www.manaraa.com

61

[35] rotate_stmt -> ROTATE LPAREN (NUM | REALNUM | ID) RPAREN

[36] delete_stmt -> DELETE LPAREN (ID | strExpr) RPAREN

[37] dist_stmt -> DISTANCE LPAREN ID RPAREN SEMICOLON*

[38] ncn -> NUM | NUM COMMA NUM

[39] substr_method -> ID DOT SUBSTRING LPAREN ncn RPAREN SEMICOLON

[40] indexOf_method -> ID DOT INDEXOF LPAREN ID RPAREN SEMICOLON

[41] length_method -> ID DOT LENGTH LPAREN RPAREN SEMICOLON

In the end, the goal with the custom parser is to provide a canvas for students to

flex their computational thinking skills through diverse code problems. It also allows the

system to keep track of any syntactical mistakes and the errors associated with those

mistakes. This data can then be leveraged for the adaptability component by giving

players appropriate feedback based on the severity of their syntax follies. This will be

described further in the next section.

3.2 Object Terminal Window

 Depicting an accurate coding environment is essential to the learning process of

CS. As discussed previously, presenting a misconception about the field does more harm

than good in the long run. Consequently, the coding environment in System Dot looks

like a vim or console window in order to convey the very foundation coding was

originally written on. The mundanity of the coding environment stems from the belief

that integrated development environments tend to handhold the programmer through the

IntelliSense feature and colored code. Then, when a student in CS starts learning about

lower-level environments with none of those helpful features, they take longer to adjust

to the point of possible surrender. To prevent that from happening, System Dot holds a

www.manaraa.com

62

coding environment with minimal handholding and an emphasis on text. In the world, it

is coined the “terminal window”.

 From a technical perspective, the terminal window is a conglomeration of input

fields, text labels, and buttons. In order to simulate a text area, custom code was written

to make the text caret jump between consecutive input fields when pressing the ENTER

key or shift between them when pressing the UP and DOWN arrow keys. The following

image shows the Unity hierarchy of game objects responsible for building the terminal

window mapped with what it actually looks like in-game:

Figure 3.2: A Mapping of Unity’s Inspector with In-Game View

Essentially, the main way the player interacts with the virtual world is through

this terminal window; it acts as a middleman between the code the player has written and

www.manaraa.com

63

the custom parser illustrated before. Once the player has written or observed the code,

they can either execute the code through the green play “debug” button or exit the

window without executing. When the player exits the terminal window through the “red

X” button, a notification will appear notifying them that none of their code changes have

been executed. Players can either click the debug button or use the “F5” keyboard

shortcut to execute the code. This is extremely similar to how an integrated development

environment functions. Even though this functionality is not faithful to how a vim or

console window works, leeway was still given ease the player into the environment. The

way the user interacts with the terminal window influences how the adaptability

component of the game classifies their learning style. If the player uses the “F5”

keyboard shortcut frequently, it shows that they are sensible and willing to perform from

memory. More details will be discussed later in the next section.

 All in all, the terminal window is a pivotal component in System Dot as it

interfaces to player with computational coding puzzles and exposes them to how coding

looks like in the real world. The main goal for its place in the game is to allow the user to

construct their own perception of programming from their experiences with the terminal

window and hopefully spark a flame within them to continue pursuing the CS discipline.

3.3 Dialogue XML Trees

 System Dot uses dialogue to not only propel the player to the end of the level, but

to subtly teach them important programming concepts during crucial moments. As

described in the Design of the Virtual World section, the virtual world uses the learning

www.manaraa.com

64

theory of cognitive apprenticeship through IntelliSense. In order for IntelliSense to be a

mentor for the learner, it will need to establish a rapport based on the actions of the

player. That is why, technically, the dialogue system was designed with an event-driven

approach in mind. In order to easily modify what is being said by IntelliSense, local

XML files were used to modularize when and where dialogue would be spoken. Here is

an example of what a section of dialogue would look like from the XML side.

Figure 3.3: Example of Dialogue XML

An object-oriented approach was taken to design how the dialogue system works

for each level in the virtual world. The parent class, Dialogue, is in charge of parsing

through the XML file and splitting up the speech into events and sayLists that can be

performed by its child classes. A sayList has both a who and what attribute detailing the

non-playable character who is speaking the dialogue and the actual text of the dialogue,

respectively. One of these child classes is IntelliSense, who has a specific way of starting

and finishing dialogue by zooming in and out of the player. Since IntelliSense is in more

than one level with different actions, a specific instance of IntelliSense is also created. In

this example, IntelliSenseLevel2 holds the code responsible for deciding what

IntelliSense says when the player performs certain actions in the second level.

www.manaraa.com

65

Figure 3.4: Class Diagram of Dialogue System

When IntelliSense is speaking, the player freezes and all actions in the game cease

to matter. A white box appears at the bottom of the screen with revealing text (similar to

most role-playing video games). The text appears at a moderate and reasonable pace. If it

is too slow for the player, they can progress through the dialogue at their own pace by

simply hitting the spacebar before all the text appears. The speed at which the player

advances through the dialogue will be recorded in the log files, which will be discussed

further below.

Figure 3.5: In-Game View of Dialogue Window

www.manaraa.com

66

The dialogue spoken by IntelliSense is responsible for teaching the basics of

control input and coding syntax in a friendly and inviting fashion. Even though the tone is

inherently condescending, there is a playful and naive nature to IntelliSense’s direction

and assistance. By the end of the player’s interaction with IntelliSense, they should be

able to form a bond with this floating blue image and earnestly listen to everything it has

to say. None of this would be possible if it were not for the XML parsing system

producing easily modifiable dialogue statements. If a statement or line does not work, it

is as simple as opening up the XML file and changing that line; no need to modify any

existing logic in any of the child Dialogue scripts.

3.4 Data Logging

 An adaptive learning environment needs to take in data, evaluate its significance,

and then output a personalized experience to the user. Since System Dot aims to take a

player’s behavior as input to the adaptive system, there needed to be a way to keep track

of every action the player performs. Logger code has been injected into gameplay scripts

involving moments where the player directly interacts with the game. For instance, a log

is kept for all the times a player opens the terminal window for an enemy and executes

code. All these details are being written into a serialized file in the LogToFile class. Each

line of the log file corresponds to the timestamp, action, and action type of a player’s

action in that order. Here is a sample of what one player’s log file looked like:

www.manaraa.com

67

Figure 3.6: Example of a Log File

 The timestamps indicate the order of which the player performed the following

actions. Then, the action gives a brief description of how the player interacted with the

virtual world. The action types are similar to the main points discussed previously in the

Technical Description of the Virtual World section. The dialogue action type deals

with any form of interaction with IntelliSense such as skipping through its dialogue. The

terminal-window action type deals with how the user plays around with the built-in

coding environment including the keystrokes taken like the ENTER or ARROW keys or

the objects clicked like the green debug button. Lastly, the code action type revolves

around the custom parser built. Does the code conform to the context-free grammar

defined beforehand? How often does the player make syntax mistakes? These action

types provide an easy method to parse and data mine the log file for relevant information

to answer these types of questions.

www.manaraa.com

68

 Players’ actions are not the only items tracked by System Dot. Specific in-game

statistics like the time taken to beat a level and the number of deaths track the player’s

performance. These attributes are also printed to a serialized file in a class called

StatsLog. On top of in-game statistics, adaptability behavior was also tracked to build the

user’s model for adaptation including the percentage of times the player used the API to

aid in their journey or how many objects they viewed in a certain level. This will be

fleshed out extensively in the next section, but here is a snippet of a real user’s statistics

through the first level.

Figure 3.7: Example of Adaptive Statistics in Log File

www.manaraa.com

69

 Most of this data would become obsolete or inaccurate if there was not a way for

it to persist through multiple play sessions. Having an auto-save feature allows the player

to take a break, close the game, and then continue their play session at a later time while

retaining all of their progress from their previous play, including adaptive statistics and

logged player actions. System Dot creates a template of a game state, populates the

template with information from the current game state, and stores it on the local system

whenever the player hits a designated checkpoint in the level. When the game is loaded

again at a later time, the values saved into the game state template are loaded in by the

system and then presented to the user. The class responsible for storing this game state

template is PlayerStats.

 Figure 3.8: Example of Checkpoints in the First Level

www.manaraa.com

70

The entire playthrough of System Dot will take more than five hours to complete.

It is not expected of players to be able to finish the whole experience in one play session.

Therefore, it is essential that there is a way for a player to resume the game in the most

recent state they left it in similar to how a student comes into class the next day

continuing a prior topic. Having data persist between scenes and play sessions allows

System Dot to eliminate mental fatigue and have the player turn on their brains when they

decide to continue playing. Having the player oversee their learning is the best way to get

them engaged and one of the biggest advantages a virtual world has over a traditional

classroom learning environment.

www.manaraa.com

71

4. THE ADAPTABILITY COMPONENT

4.1 Introduction

The ultimate goal of this thesis is to develop a system that can adapt its messages

and content to a player’s learning styles. However, this current thesis and game does not

yet include this piece. To work toward that goal, it is important to understand approaches

to creating an adaptive system, and to describe the approach used to develop the

underlying system for System Dot once the learning style model is tested for its ability to

detect a player’s learning style.

There have not been an extensive number of adaptive systems developed for

educational virtual worlds. Among those that have been developed, the virtual world

tends to be an extension of an Adaptive Educational Hypermedia System (AEHS). For

instance, Chittaro and Ranon (2007) integrated a virtual environment within a web

browser through a 3D plug-in to place the user into a 3D virtual environment representing

their hypermedia content. They fed user behavior into the AHA! Engine, which uses the

adaption/domain model to framework a user’s interaction with the system. The engine

outputs personalized data that will then be translated into the virtual environment for the

player to observe. For example, if the knowledge level of the user is subpar, then the

virtual 3D world hides certain objects that hold more advanced topics. This approach is

incredibly similar to the hiding of hyperlinks in an AEHS.

Scott, Soria, and Campo (2017) found that a majority of educational virtual

worlds use a rule-based approach, which involves a static method of determining whether

www.manaraa.com

72

the system needs to adapt to the student through the adaptation/domain learning model.

They agree that the main advantage of using a virtual world as a learning environment is

to not only reach a learning objective but to also author these adaptation rules through a

storyline (Scott, Soria, and Campo). In the case of System Dot, the storyline stealthily

interweaves the foundation of computer hardware knowledge in a logical and engaging

way.

Most researchers agree that there are various ways adaptive systems can alter the

way it displays itself to the learner (Hauger & Köck, 2007; Carmona et al., 2007; Garcia,

Amandi, Shiaffino, & Campo, 2005; Scott, Soria, & Campo, 2017). The content being

displayed could add prerequisite information or additional explanations to a topic,

variants of information by hiding confusing details that the learner is incapable of

grasping, and sorting information according to their relevance (Hauger & Köck, 2007). In

the case of System Dot, the virtual world will hide or show information corresponding to

the learning style of the player. For the virtual world to assess what to display to the

player, it must first model the player and grasp how they acquire and learn information

(Carmona et al., 2008).

Brusilovsky and Millán (2007) claim that a user model is necessary to make

adaptability work. A user model is a “representation of information about an individual

user” such as how the user interacts with the system’s interface or the types of inputs the

user feeds the application (Brusilovsky & Millán, 2007). There are five types of

information that can be modeled—knowledge, interests, goals, background, and

individual traits.

www.manaraa.com

73

Since System Dot aims to be an educational learning environment, knowledge is

an essential piece that needs to be tracked and assigned to the user’s model. In the case of

this virtual world, the only indication that a user has or has not successfully attained

knowledge is through the amount of times they compile code with and without errors.

Because there is not a clear indication that a player’s completion of a level guarantees

expert mastery of the level’s central programming concept, this quantitative tracking of

syntax errors provided the only reasonable measurement. Interests, goals, and

background were not taken into heavy consideration when modeling the player in System

Dot because the game-like virtual environment did not set out to filter information,

distinguish between multiple learning goals, and explicitly query the user for personal

information. However, the feature heavily tracked and discussed extensively in the next

sections is the user modeling of individual traits.

 Brusilovsky and Millán (2007) categorize individual traits in two ways:

cognitive and learning styles. Since System Dot is an educational learning environment,

learning styles were chosen. Individual traits allow for content-level adaptation—what

the virtual world presents to the user will depend on how likely they will perceive it

based on the way they typically adopt new information. Unlike the user’s background,

Brusilovsky and Millán (2007) suggest that individual traits need to be extracted from a

psychological test. What better way to mentally test the user than through a game-like

virtual world. The following two sections will detail what type of learning styles were

selected and how they pertain to System Dot.

www.manaraa.com

74

4.2 The Learning Style Model

 Carmona et al. (2008) define a learning style as the way a person “collects,

processes and organizes information”. Amidst the various learning style models

discussed before, System Dot implements the Felder-Silverman Learning Style Model

(FSLSM) due to its success rate and popularity amongst e-learning environments (Felder,

2003). The FSLSM classifies a learner in four ways:

- Processing- Active people tend to be impulsive learners by jumping into the

material immediately and trying out different methodologies; they often say “let’s

try it out and see how it works”. Meanwhile, reflective people contemplate about

what they have learned before jumping into the material; they often say “let’s

think it through first”.

- Perception- Sensing people typically learn best through concrete facts, details,

and data; they focus on memorization and regurgitation of knowledge and do not

expect anomalies. On the other hand, intuitive people love to deal with theory and

abstractions; they look at the big picture and recognize patterns.

- Input- Visual people find images and visual information more appealing than

straight text while verbal learners prefer explanations with both written and

spoken words.

- Understanding- Sequential people adopt information more quickly when it

appears to them in an ordered, step-by-step manner. Contrarily, global people

organize their information in a holistic fashion in no particular order or reason.

Since the design of the virtual world revolves around a sequential progression of

www.manaraa.com

75

programming concepts, there is not an opportunity for the player to jump around

from one concept to another. Therefore, the understanding attribute of the

learning theory model has been neglected for this thesis.

 With these learning styles in mind, the main goal of System Dot is to classify the

player as a certain type of learner. Then, the virtual world can adapt the feedback given to

the player based on the type of learner he or she is, and on the kind of errors the player

makes. For instance, if the player is classified as a visual learner, then more emphasis will

be put on the “API” section of the game, which holds a visual glossary of what most of

the programming concepts mean. In another example, if the player is classified as an

active learner but suffers through a lot of syntactical errors, then System Dot will suggest

that the player slows down and takes some time to reflect on their code alterations.

Ultimately, the virtual world generates a perception of the player that it then uses to

maximize its teaching potential. Until the desired precision of the learning style

classification system is achieved, this feedback system was only planned and not

implemented in this thesis.

4.3 Dynamic Bayesian Network Implementation

There is not one way to implement an adaptive learning system. Scott et al. (2017)

cite more than five methods including clustering and machine learning, decision trees,

and rule-based adaptation rules. Due to the uncertainty surrounding how particular

actions affect the learning style classification in System Dot, a probabilistic approach was

taken in the form of a Bayesian network.

www.manaraa.com

76

Bayesian networks are used to adapt many systems. They can be used to represent

skills and knowledge in a domain with probabilistic certainty (Le, 2016). Before a

Bayesian network can be used, the problem domain must be clearly defined such as the

student model and learning objects being assessed (Carmona et al., 2008; Garcia et al.,

2005; Culbertson, 2016; Le & Pinkwart, 2015).

Garcia et al. (2005) used a basic Bayesian network to detect the learning style of a

student in a Web-based educational system. They used a knowledge-based approach to

construct their network. For example, when classifying the student as an active or

reflective learner, they evaluated the student’s presence in chat rooms and forums. To

determine the impact of a certain parameter on the learning style, they performed prior

small experiments that cross-examined a student’s behavior with the learning style

derived by the Index of Learning Styles Questionnaire (Felder & Soloman, 2017). With

the appropriate conditional probability tables, they could classify a student’s learning

style with a high degree of precision.

Carmona et al. (2008) approached the classification of a student’s learning style

through a dynamic approach. Unlike the previous static model, Carmona sought to use a

temporal network to monitor continuous interactions from the user with the system.

When the student selected learning objects in the future, a new time slice of the network

was generated and the learning style would be updated. Ultimately, each succeeding time

slice classified learners based on the current learning objects selected and past

classification by the network. Likewise, System Dot is a progressive game that tracks the

temporal state of the student model based on levels completed. Consequently, a similar

www.manaraa.com

77

Dynamic Bayesian Network was used to model the student’s learning style in System

Dot.

A DBN or Dynamic Bayesian Network (Dean & Kanazawa, 1989) is a

representation of a problem domain through a series of random variables and their

dependencies with each other. The network has both a quantitative (represented by the

conditional probability distribution of these random variables) and qualitative part

(shown through its visual structure). Each dependency is visualized as an arc from one

node to another, and the strength of that dependency relies on the conditional probability.

System Dot uses a DBN over a standard Bayesian Network (BN) because the virtual

world is changing over each level. Consequently, the results improve over time based on

the prior classification in a previous time period. In the case of System Dot, the time

granularity between each network is the time when the player finishes a level.

Let us run through the player statistics tracked by System Dot and how they

pertain to the three learning styles assessed:

Processing (Active vs. Reflective)

- Time To Click Debug After Change (TTD): represents the time taken to hit

the “debug” button or F5 key to execute the code after the player modified

it. A threshold of five seconds has been set to determine whether the

player was “quick” or not. The probability taken is the number of times

the player quickly executed the modified code under five seconds over the

total number of times the player executed modified code. The higher the

probability, the less contemplative the player is in assessing their

www.manaraa.com

78

modifications to a piece of code and the more active they are in their

learning style.

- View Object Code (VOC): Scattered throughout the level are enemies

whose code does not necessarily need to be seen. The player can go about

their play session without ever hacking these objects. This field represents

the number of enemies viewed by the player. When the player actively

clicks around to observe their environment, they are taking control of their

learning by jumping right into the material and observing their

surroundings. The metric represents the number enemies viewed over the

total amount of enemies in the level.

 Perception (Sensing vs. Intuitive)

- Use API: The API is a cheat sheet at the voluntary use of the player. When

they open the API, they are exposed to a visual library of programming

knowledge that they can use to their advantage. This metric is tracked

when the API was opened within the time frame that the player made an

edit to the code. As a result, the probability of the API being used is the

total number of times it was opened during a code edit over the total

number of code edits. The higher the number, the less sensing the player is

with memorizing important syntax and the more intuitive they are with

understanding abstractions.

www.manaraa.com

79

- F5 Hit: The player has the option to hit F5 as a shortcut to execute the

code. It is completely optional, but a “sensing” learner would primarily

take advantage of this shortcut as a memorization tool.

 Input (Visual vs Verbal)

- Use API: As described before, if the player uses the API as a crutch, then

they tend to represent important programming concepts through their

visual counterparts.

- View Object Code: If the player tends to explore why an object visually

looks like it does through the code, then we can say they are less prone to

understand information through just text and words.

 Feedback Indicators

- Number of Syntax Errors: The number of times the player made a mistake

with the coding syntax over the total times the player modified the code.

While this metric is not used in conjunction with the previous metrics or in

the DBN in general, it is helpful both in modeling the knowledge level of

the player and determining the type of feedback returned in future

development of the feedback system. Ideally, if the player suffers more

syntactical errors than flawless code executions, then the virtual world will

suggest that the player change their learning style since it is not working.

- Number of Perfect Edits: Perfect edits constitute the situations where the

player modified the code flawlessly the first time. The higher the number,

the better the system rates their performance. Unlike the number of syntax

www.manaraa.com

80

errors, System Dot will deem the player knowledgeable and capable of

learning through the environment. As a result, it will interfere less when

the feedback system is implemented later.

 To concisely summarize, here is a table that sorts the above variables with their

corresponding learning style:

Table 4.1: Summation of DBN Parameters

Learning

Style

Player

Behavior

Assumption Algorithm

Processing Time to Click

Debug After

Change (TTD)

View Object

Code (VOC)

Threshold to click debug is 5

seconds

An object is seen if it has

been clicked by the player

p(f) =
𝑜𝑓 𝑑𝑒𝑏𝑢𝑔𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑑𝑒𝑏𝑢𝑔𝑠
> .5

 ~ active

p(f) =
𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑠𝑒𝑒𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
> .5

 ~ active

Perception Use API

F5 Key Hit

API is considered used if it is

open while code is shown

Tracked when the F5 key is

hit while code is shown

p(f) =
𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐴𝑃𝐼 𝑜𝑝𝑒𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑒𝑑𝑖𝑡𝑠 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
> .5

 _~ intuitive

p(f) =
𝐹5 𝑘𝑒𝑦 ℎ𝑖𝑡 𝑜𝑛 𝑑𝑒𝑏𝑢𝑔

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑑𝑒𝑏𝑢𝑔𝑠
> .5

 ~ sensing

Input Use API

View Object

Code (VOC)

API is considered used if it is

open while code is shown

An object is seen if it has

been clicked by the player

p(f) =
𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐴𝑃𝐼 𝑜𝑝𝑒𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑒𝑑𝑖𝑡𝑠 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
> .5

 ~visual

p(f) =
𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑠𝑒𝑒𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
> .5

 ~visual

www.manaraa.com

81

There were multiple ways the DBN could have been drawn. One way is for all the

nodes to be drawn into one huge DBN [A].

Figure 4.1: Conglomerated DBN [A]

The other way is for each learning style to be divided into separate sub-networks

[B].

Figure 4.2: Separated DBN [B]

TTD VOC API F5

K

Processing Perception Input

Learning

Style

TTD

Processing

VOC API

Perception

F5

API

Input

VOC

www.manaraa.com

82

 DBN B was chosen because of the reduced computational complexity. Network A

has 128 parameters while Network B has a maximum of 8 parameters.

 The above networks suggest the following:

- Determining if the player is active or reflective depends on the percentage

of times the player quickly executes the code after changing it and the

percentage of viewed legacy code

- Determining if the player is sensing or intuitive depends on the percentage

of coding that the player used to reference the API and the number of

times the player hits the F5 key when executing code.

- Determining if the player is a visual or verbal learner depends on how

frequently they open the API and view enemy’s legacy code.

 Right now, these relationships are snapshots of a player’s behavior through a

particular level. However, if we would like to capture the progression of levels the player

goes through, then we

would need to make this

network dynamic. This

means that once the player

finishes a level, a time slice

of that network is generated

based on the above player

behaviors and the previous

level’s results. To define the DBN’s parameters, System Dot uses a combination of

Figure 4.3: DBN Adjusts Over Time

API

Perception

F5

T = 0 (beating first level)

API’

Perception’

F5’

T = 1 (beating second level)

www.manaraa.com

83

personal knowledge and player data when determining how a certain player behavior

affects a learning style. The initial probabilities of the parameters are taken from the

results of the player completing the first level. The method for estimating the conditional

probabilities involve assigning an assumptive weight to all these parameters and then

calculating the effect it had on determining the learning style of the player. It is

impossible to determine accurate conditional probabilities without actual data so

preliminary ones were set according to personal assessment. Let us assess each learning

styles’ conditional probability table and see how these probabilities were determined.

Table 4.2: Preliminary Processing Learning Style Parameter Weights

TTD VOC Processing- Active Processing- Reflective

T T 1 0

T F .75 .25

F T .25 .75

F F 0 1

 The swiftness of a player executing code they modified is weighed more than the

opportunity they had actively viewing object code examples. The chosen weight of TTD

was three times more indicative of an active or reflective learner than VOC. For instance,

the first row depicts a situation where the player has viewed a majority of the enemies

and typically executes code immediately. With both traits suggesting that the player is an

active learner and they are both being shown, there is 100% certainty that the player is an

active learner (of course, this will change based on the results of the actual data).

www.manaraa.com

84

Likewise, the second row depicts the impact of the TTD’s weight by assigning the

certainty of the player being an active learner to three times as likely as being a reflective

learner.

Table 4.3: Preliminary Perception Learning Style Parameter Weights

Use of API F5 Key Hit Perception - sensing Perception - intuitive

T T 0 1.00

T F .2 .8

F T .8 .2

F F 1.00 0

 Using the API frequently when modifying and viewing code is weighed more

than the number of times the player hit the F5 key to debug their code. The chosen

preliminary weight of using the API was four times more indicative of sensing or

intuitive learner than the number of times they hit the F5 key. Just like the previous

conditional probability table, the first row shows the favorable extremes of both player

metrics. In a situation where the player uses the API and also hits the F5 key to execute

their modified code, the network assigns a 100% certainty that the player is an sensing

learner (once again, this will change once actual data is analyzed). Similarly, the second

row depicts the impact of using the API by assigning the certainty of the player being an

intuitive learner to four times as likely as being a sensing learner.

www.manaraa.com

85

Table 4.4: Preliminary Input Learning Style Parameter Weights

Use of API VOC Input - Visual Input - Verbal

T T 1.00 0

T F .75 .25

F T .25 .75

F F 0 1.00

Similar to the processing conditional probability table, the impact of VOC is three

times less than the use of the API to maintain consistency with previous models. Once

again, these values are based on personal intuition and assumptions and only serve as

preliminary data to kickstart the DBN.

4.4 Sample Assessment

The first time System Dot will classify the player as a certain type of learner is

when they successfully complete the first level. Let us see how the “Perception” learning

style is classified if the player opens the API menu 21 out of the 50 times they could have

when they changed the code and hit the F5 key 58 out of 80 times to debug. The

corresponding probabilities that the player would use the API and hit the F5 key is 43%

and 72%, respectively, simply by taking the number of occurrences and dividing it by the

total number of opportunities for the metric to occur. Based on this knowledge, to

determine if the player is sensing, we must calculate the following probability P(Perc =

sensing, API, F5), which is the probability that the player is a sensing learner and uses the

www.manaraa.com

86

API and hits the F5 key. Through the chain probability rule, this joint probability can be

reduced to the following marginal probability:

P(Perc = sensing, API, F5) = P(Perc = sensing | API, F5) * P(API) * P(F5)

 Since we are marginally calculating the probability, the above equation can be

expanded to:

P(Perc = s, API, F5) = P(Perc = s | API = T, F5 = T) * P(API = T) * P(F5 = T) +

 P(Perc = s | API = T, F5 = F) * P(API = T) * P(F5 = F) +

P(Perc = s | API = F, F5 = T) * P(API = F) * P(F5 = T) +

P(Perc = s | API = F, F5 = F) * P(API = F) * P(F5 = F)

Substituting what we know, we can calculate P(Perc = s, API, F5) like so:

 P(Perc = sensing, API, F5) =

0 * .43 * .72 + .2 * .43 * .28 + .8 * .57 * .72 + 1 * .57 * .28

 = 0 + .024 + .328 + .1596 = .5116 = ~51% sensing

After the first level, the player is classified as either a “sensing” or “intuitive” learner

based on the higher posterior probability. In this case, the player is nearly classified as a

“sensing” (51%) rather than an “intuitive” (49%) learner.

 When the player completes the second level, a new set of probabilities will be

generated for opening the API and hitting the F5 debug button. These metrics will be

updated from the previous level’s probability. System Dot uses the previous perception

probability of the first level to determine the growth or decline of the player’s current

perception learning style. Essentially, past data will update the beliefs of the system’s

www.manaraa.com

87

current data. This will allow the DBN to precisely refine its learning style classification

over time.

 For instance, let us assume that in the second level, the player viewed the API 10

out of 47 times and hit the F5 key 61 out of 98 times. The corresponding probabilities of

API’ and F5’ will be (19 + 10) / (50 + 47) =29.89% and (58 + 61) / (80 + 98) = 66.85%,

respectively. The calculation of the second level’s perception learning style is as follows:

 P(Perc’ = s, API’, F5’) =

 P(Perc’ = s | API’ = T, F5’ = T) * P(API’ = T) * P(F5’ = T) +

 P(Perc’ = s | API’ = T, F5’ = F) * P(API’ = T) * P(F5’ = F) +

 P(Perc’ = s | API’ = F, F5’ = T) * P(API’ = F) * P(F5’ = T) +

P(Perc’ = s | API’ = F, F5’ = F) * P(API’ = F) * P(F5’ = F) =

0 * .2989 * .6685 + .2 * .2989 * .3315 + .8 * .7011 * .6685 + 1 * .7011 * .3315 =

0+ .0198 + .3749 + .2741 = .62718 = ~63% sensing.

It makes sense that the classification of the learner as a “sensor” is higher than

before. The player continues to scarcely use the API, which increases the “sensing”

metric. As the player continues to play, their decisions and behavior inside the virtual

world will continue to precisely classify them as a certain type of learner. These

calculations occur for each of the three sub-networks illustrated before-- “processing”,

“perception”, and “input”. With these learning styles classified, the system can better

adapt by giving insightful and personalized feedback rather than generic and repetitive

ones.

www.manaraa.com

88

5. USABILITY TESTING CASE STUDY AND RESULTS

5.1 Introduction

 The main goal of this thesis is to discuss the method taken to develop an adaptive

feedback system in the future for the virtual world System Dot. The approach decided

upon was a detection system capable of classifying a player’s learning style according to

the Felder-Silverman Learning Style Model. This system can also adapt its style

classification to a player’s response to changes in the game as shown through a case

study. User testing was ultimately conducted to test the validity of this detection system

and evaluate the effectiveness of the learning parameters presumed in the previous

section. Once satisfied with the accuracy and precision of this detection system, steps can

then be later taken to implement a personalized content and messaging management

system for the virtual world. Lastly, a qualitative feedback survey modeled after the

System Usability Survey (SUS) format was also distributed to assess the accessibility of

the virtual world. The culmination of both results will reveal new ways to improve the

design and technicality of the virtual world in the future.

5.2 Data Collected

Felder and Soloman (2008) introduced a psychometric Index of Learning Style

Questionnaire (ILSQ) to formally classify a student as a strong, moderate, or mild type of

learner for each one of their learning styles. The basis of the adaptability component in

System Dot is inherently assumptious. A combination of player behavior data and

www.manaraa.com

89

personal judgement was used to preliminarily determine the impact player behavior had

on a certain learning style.

 Due to the length of development and time constraints, an IRB-approved research

study was not held for the intended target audience of eighth graders to high school

students. Instead, the study was approved for adult participants aged 18 and up and

focused on validating these assumptions and gathering data rather than determining if the

virtual world was truly effective at teaching programming. The user testing was

conducted with a convenience sample consisting of friends and family who ranged from

18 to 26 years old with varying degrees of programming experience. Because the full

playthrough of System Dot is estimated to take more than five to six hours, a “demo”

version of the game was developed that took the player through less than half of the game

in about one to two hours. The first level dealt with output systems and basic syntax

while the second level ramped up in difficulty with data types and object methods.

Dividing the game in half still lent itself as a suitable test environment for the

DBN since the two levels with two boss fights provided four time stamps to capture and

refine the player’s learning style classification. Once the tester played through the game,

they were then asked to send over the log files the game tracked throughout their play

session. Afterward, they would fill out the ILSQ and a short usability feedback survey.

Ultimately, the results of the ISLQ would either validate or invalidate the learning style

classification generated by the virtual world through the log files. With this data, the

system could be refined and harnessed to classify a player’s learning style more precisely

in the future.

www.manaraa.com

90

5.3 A Case Study

 Due to the limited amount of user tests, it would be more worthwhile to observe

one of the tester’s actual learning style derived from the ILSQ, heavily evaluate their

logged behavior as they progressed through the demo of the game, and assess how

accurately the network classified the player in accordance to the ILSQ rating. The ILSQ

classifies a learner on a scale from 1 to 10, with 1 being a mild, neutral form of adopting

the learning style while 10 being the strongest. The player we will be studying was

classified by the ILSQ as follows:

Table 5.1: Player’s ILSQ Rating

Processing (Active vs. Reflective) Active - 3

Perception (Sensing vs. Intuitive) Intuitive - 7

Input (Verbal vs. Visual) Visual - 3

 The player is a strongly intuitive and mildly active and visual learner. We can

imagine that, based on the definitions of these learning styles, that the player typically

thinks with the big picture in mind, thinking abstractly and visually when approached

with new information, impulsively implementing different methodologies to better grasp

the material. Now, let us run through how the player behaved throughout the virtual

world and tie these behaviors to the classification generated by the ILSQ.

www.manaraa.com

91

Figure 5.1: IntelliSense’s Movement Tutorial

 When the player first enters the virtual world, they are greeted by IntelliSense,

who asks for the player’s name (1) and then undergoes a long, drawn-out tutorial

explaining the basic controls of the virtual world (2). To reinforce basic movement, those

same controls are depicted visually above the player as a continuous reference. As the

tutorial progresses, more controls are being introduced including jumping (3), double-

jumping (4), and changing the color of the player’s boots (5). The time a dialogue

segment starts and whether or not the player pressed the SPACE key to skip it is logged

in the level’s corresponding log file with a timestamp. We can see from the log file below

that the player sped through all five dialogue sequences, hitting the SPACE key to

quickly progress through IntelliSense’s speech. Since the player was originally classified

www.manaraa.com

92

as a visual learner, we can assume that they must have understood the visual cues the

game was giving them and did not bother to read the same instructions. While that

tutorial would have taken at least two minutes to completely digest and progress through

for a player who did not skip through it, this player took half the time with only a minute.

However, after the fifth dialogue sequence, the player is confronted with a small

assessment, checking whether or not they had paid attention to the tutorial.

Figure 5.2: Player’s Log File during IntelliSense’s Movement Tutorial

www.manaraa.com

93

 After the player movement tutorial, the player is confronted with a pit of spikes

that can only be passed if they switch their boots’ colors from blue to green using the ‘Q’

key. According to the very end of the log file, the player failed this test, perishing to the

pit of spikes. We can assign this impulsiveness to the active learning style of the player as

classified by the ILSQ. Within the first minute of the game, we have already observed

player behavior that supports the ILSQ’s classification of the learner as an active and

visual learner.

 Right after IntelliSense talks about how a certain command changes the colors of

objects, the player is confronted with two colored enemies. Instead of investigating how

these objects exhibit different colors than the one they previously saw by clicking on

them and observing their code like they did the first enemy, the player continues to play

the game by swiftly killing them. This can be seen as another impulsive act, increasing

the chance that the player is an active learner.

Figure 5.3: Player’s Log File for Faulty Area

www.manaraa.com

94

 Let us observe the player’s behavior when they traverse an environment filled

with faults. All of the “Slime” objects have broken code inside of them. It is the player’s

choice to open these objects’ code, fix the syntactical errors, turn them into a certain

color, and defeat them. None of this is required to advance to the next checkpoint.

However, the player voluntarily explores the virtual world by opening the terminal

windows of both objects that block the path to the cache (“chest 4”). Opening the

terminal window for “Slime (17)” but not correcting its code shows that the player is

observant and tends to understand the computational significance through the written

code. When the player corrects the syntax error of “Slime (19)” the first time within 5

seconds of opening the terminal window, it shows they spend little time reflecting about

the syntactical changes and would rather jump into finding out if their changes were

correct. Both the exploratory nature of the player as well as the quick time it takes for

them to debug code depicts an intuitive and active player. On the other hand, when

debugging both “Slime (5)” and “Slime (6)”, the player spends little time in the terminal

window and used the ‘F5’ key as a shortcut to debug. Using shortcuts tends to depict a

sensing learner due to the learner’s tendency to memorize techniques.

www.manaraa.com

95

Figure 5.4: Game View of Faulty Area

 Most of the challenges in the first level revolve around slight modifications of

already existing problems that have solutions. It is as if IntelliSense has taught the player

addition and the objects all contain addition problems; it is a way to master already

existing material, but not a method to see how the player would react to something new.

That is where the enemy blocking the path after the fourth checkpoint comes in. The

player cannot progress above or below the huge enemy nor can they defeat it by jumping

on top of it. Observing how the player reacts to a roadblock they never experienced

before will give us insight on how they learn to overcome unexpected scenarios.

www.manaraa.com

96

Figure 5.5: API Showing Solution to Enemy Blocking the Path

 The log file below shows the player’s interaction with the game to overcome the

above obstacle (“Slime (15)”). The player’s approach did not immediately reap a valid

solution. We can see that within the first 8 seconds of discovering the enemy, they decide

to open the object’s code, see that it is syntactically correct, and then try to jump over it--

to which they take damage and do not pass.

Figure 5.6: Player’s Log File for Passing Enemy Blocking the Path

www.manaraa.com

97

In this part of the level, the player must semantically decide what code would be

the best input to pass the object. Upon failing the first time around, the player decides to

explore their surroundings, trying to find an alternative path (hence the interaction with

another moving platform). Ultimately, the player realizes there is no other way and tries

to hack the object again. The player does so multiple times until they decide to open the

API menu for help. This is where the player’s intuition and visual learning style become

reinforced. It was not until seeing the movement commands physically moving objects in

the API that they realized they could do the same trick with the enemy object. Even

though the log files indicate that the player’s interaction with the object was syntactically

correct, further investigation would come to the conclusion that the player had trouble

figuring out how to surpass this puzzle. The player’s spontaneous behavior by modifying

the code more than once and receiving damage by trying to jump over the object also

suggests an active learning style with a “try it” attitude rather than sitting and reflecting.

www.manaraa.com

98

Figure 5.7: Player’s Adaptive Stats after the First Level

In the end, the player received the above statistics about their learning style after

the first level. We can observe throughout the log file of the first level that the player was

incredibly active-- every time they opened an object’s terminal window, they were able to

modify the code and hit debug less than 5 seconds. We can also see throughout the log

file that not every object was clicked on. For instance, “Slime (18)”, “Slime (16)”, and so

on were neglected, suggesting an inactive learning style. Considering the ILSQ rated the

player as an active learner, the preliminary assessment of the player’s processing learning

style by the virtual world was fairly accurate.

However, both the perception and input learning styles were not assessed

identically to the ISLQ. The only two times the player opened the API was when they

were forced to in the opening tutorial of the game or stuck for an extended period of time

www.manaraa.com

99

on a puzzle. Otherwise, the API remained untouched. Because the lack of opening the

API data skewed the end result adversely, it might be wise to both revise how the API is

integrated within the virtual world and lower its parameter weight in the DBN. Moreover,

through our observations of the log file, we also noticed other indicators influencing how

the player learned throughout the virtual world that we could leverage for the DBN. Both

these thoughts will be elaborated more in the Discussion section below.

After the first level, the player is seen as an active, sensing, and verbal learner by

System Dot. The first level’s boss Let us now observe how these learning styles are

adjusted after the player progresses through the second level, which has fewer tutorials

and more involved programming concepts like data types and object methods.

Once again, at the start of the level and its log file, the player speeds past all

forms of verbal dialogue giving context to what the player has experienced so far. This

can be shown through almost all instances of dialogue within the level. Instead of delving

extensively into each player choice in the second level, let us evaluate how the player

approached a problem similar to the huge enemy blocking the path in the first level.

www.manaraa.com

100

Figure 5.8: Second Level’s Activation Platform Puzzle

Near a quarter through the level, a moving platform puzzle prevents the player

from leaving. In order to surpass it, they must combine what they learned in the first level

(the ability to move platforms) and the System.activate() command of the second level to

open the two doors preventing the moving platform from moving to the left and powering

the energy line. The ability to solve this problem involves intuition-- can the player think

about the bigger picture and move the platform they are standing on to the right first

rather than the left? Will the player conquer the problem actively by testing out different

paths and trying new code or will they spend time planning ahead? The way the player

tackles this conundrum says a lot about their processing and perception learning styles.

www.manaraa.com

101

Figure 5.9: Player’s Log File for Passing Second Level’s Activation Platform Puzzle

The ideal way to solve this problem would be for the player to move the

“movingPlatform (3)” to the right, activate the door, move “movingPlatform (2)” to the

left, move “movingPlatform (3)” to the left with the correct power activation, and then

finally continue moving “movingPlatform (2)” to the left to power up the door. The

optimal solution requires four total debugs. After examining the above portion of the

second level’s log file, we can see that the player opened the terminal window for

“movingPlatform (2)” and “movingPlatform (3)” twice each, totaling four. We can

conclude that the player intuitively thought through the solution to the puzzle.

Furthermore, we can also see a disparity of time it took the player to properly code the

solution. It took the player a mere two seconds to move the first platform. Then seventeen

seconds to move the next platform. Then fifteen and finally one. The elongated period of

time it took in between could attribute to the player’s reflective mindset. Scenarios like

these are scattered throughout the second level and the player approached them in a

www.manaraa.com

102

similar fashion. At the end of the level, the player’s adaptive statistics looked like the

image below:

Figure 5.10: Player’s Adaptive Stats After Second Level

 Overall, in the second level, the player did not quickly debug all the objects,

taking a longer time on sixty-two of them and reducing the probability for “time to

debug” by 26.5%. Additionally, the player did not observe a majority of the objects

within the level, reducing the “code viewed” probability by 33.38%. Consequently, the

previously strong active statistic dropped by 28.22%, which still classifies the learner as

active, but not as strong. The input learning style also changed due to the continued lack

of opening the API in the level. However, the perception learning style remained

relatively the same.

www.manaraa.com

103

Table 5.2: Summation of Player’s Learning Style Classification Compared to ILSQ

 After

Level 1

After

Level 1

Boss

After

Level 2

After

Level 2

Boss

ILSQ

Processing

(active)

89.71% 89.22% 61.49% 61.06% Active- 3

Perception

(sensing)

95.78% 95.95% 96.33% 96.44% Intuitive- 7

Input

(visual)

17.83% 17.22% 7.64% 7.62% Verbal- 3

The rate of change for each of these learning styles have been plotted below:

Figure 5.11: Change of Learning Styles over Four Time Stamps in Case Study

www.manaraa.com

104

 In the end, System Dot appropriately classified the player as an active learner

according to the ILSQ, but failed to match the perception and input learning styles. Since

the purpose of this initial playtesting session was to refine the preliminary DBN by

adjusting weights for each of the learning metrics (“time to debug”, “code viewed”, etc.)

and gauging the relevance and significance of these learning metrics, the

misclassification by System Dot is normal and necessary to bootstrapping the virtual

world. Details on how these weights and learning parameters will be adjusted can be

found in the Discussion section below.

5.4 Usability Test Results

 On top of gathering player behavior data through log files, the eleven users who

tested the game were also asked to fill out a brief usability feedback form. A variation of

the System Usability Scale (SUS, https://measuringu.com/sus/) survey was used because

of its high accuracy rate and popularity amongst reputable software companies. On a

scale from 1 (strongly disagree) to 5 (strongly agree), users of System Dot rated the

following ten questions:

1. I think that I would play this game frequently.

2. I found the game unnecessarily complex.

3. I thought the game was easy to play.

4. I think that I would need the support of another person to be able to play the

game.

5. I found the various functions in the game were well integrated.

https://measuringu.com/sus/

www.manaraa.com

105

6. I thought there was too much inconsistency with the game.

7. I would imagine that most people would learn to play this game very quickly.

8. I found the game very cumbersome to play.

9. I felt very confident playing the game.

10. I needed to learn a lot of things before I could get going with the game.

In order to score the SUS assessment, the value of odd-numbered questions were

subtracted by 1 while the value of even-numbered questions were subtracted from 5.

These new values would then be added together and multiplied by 2.5. The average score

of all eleven users were taken into consideration when evaluating the usability of the

game.

The average SUS score of over 500 studies was 68. Therefore, a “good” SUS

score would be a number above 68. The table on the next page shows the average scores

from all eleven users for each question after processing it through the above procedure.

The higher the score, the better the outcome of a certain question. For instance, since the

first question (“I think I would play this game frequently”) is the lowest score out of all

ten questions, it represents that most players would not want to play System Dot often. On

the contrary, since the last question (“I needed to learn a lot of things before I could get

going with the game”) had the highest score, we could conclude that, relative to most

players, there was not a barrier to entry when delving into the game. Overall, though, the

average SUS score of System Dot was below 68 meaning that System Dot’s usability was

below average. Insight taken from the usability test will be discussed in the next section.

www.manaraa.com

106

Table 5.3: SUS Scores

Question Score

1. I think I would play this game frequently. 2.73 / 10

2. I found the game unnecessarily complex. 4.32 / 10

3. I thought the game was easy to play. 4.32 / 10

4. I think I would need the support of another person to be

able to play the game.

6.14 / 10

5. I found the various functions in the game were well

integrated.

6.59 / 10

6. I thought there was too much inconsistency with the game. 5.23 / 10

7. I would imagine that most people would learn to play this

game very quickly.

3.41 / 10

8. I found the game very cumbersome to play. 5 / 10

9. I felt very confident playing this game. 7.05 / 10

10. I needed to learn a lot of things before I could get going

with the game.

7.95 / 10

Total SUS Score: ~53 / 100

www.manaraa.com

107

6. DISCUSSION

6.1 Adaptability Component of the Virtual World

 Even though the DBN worked functionally, the preliminary assumptions of the

dynamic Bayesian network did not accurately classify the player’s learning style as

expected. With insight from user testing, there are several factors that may have caused

this misclassification and homogeneity of data that could be leveraged to improve the

DBN and future classifications. After looking at the case study, not all the learning style

metrics in the virtual world were integrated well enough to warrant its effective use as a

parameter in the DBN. Moreover, not enough emphasis was being placed on data logging

the semantic comprehension of programming.

6.1.1 Readjustment of Learning Parameters

 A careful amount of consideration was given to the amount of handholding a

player would experience by IntelliSense throughout their progression of the virtual world.

In the first level, IntelliSense would heavily guide the player through every interaction

with a foreign object. As shown through the previous case study, the player hardly used

the API to assess the correct syntax of a coding statement because IntelliSense had

already nudged them in the right direction. Consequently, it would be advantageous to

reduce the weight of the API parameter in the DBN for preliminary assessment of a

player’s learning style in the first level. Moreover, since most of the level revolves

around custom commands like System.body(Color.BLUE); or

www.manaraa.com

108

System.move(Direction.LEFT); with diction that is English-like, it appeared easier for the

player in the case study to make that logical memory jump to the right command.

Furthermore, almost all the objects in the level required just a line of code to write and

comprehend, which could contribute to the high number of quick debugs by the player.

However, the transition to data types in the second level provided the real

challenge and introduction to core programming concepts. There was a noticeable

decrease in handholding by IntelliSense and increase of multi-line coding problems,

which led to an increase of testers needing to take time to problem-solve like the player in

the case study. However, the API on average was used minimally, possibly because there

were no indicators or IntelliSense notifying the player of updates to the API. As a result,

time taken to debug was not as quick as the first level but the API remained closed just as

often. The average decrease of the “active” learning style due to the longer times to

debug code was about 18.25%. There were no trends observed between the decrease of

this learning style and the actual learning style classified by the ILSQ. As a result, the

common decline of the processing learning style attribute must be attributed to the vast

contrast between the design of the two levels.

The way the virtual world was designed makes it difficult to assess whether

certain player behavior influences one of the learning styles. For instance, while the API

does provide a visual glossary of key programming syntax and uses, it does not need to

be opened too frequently when approaching the “traversing a fully functional world”

section of the level. This was shown through the lack of API references during the first

level of the player in the case study. Most of the objects in these areas are non-modifiable

www.manaraa.com

109

and serve to demonstrate the computational significance of programming concepts. These

parts of the levels are inherently visual and require an intuitive mindset to grasp, but none

of the metrics used for the DBN such as number of times API was open or F5 key was hit

represent this intuitive acquisition of knowledge.

Several weights need to be adjusted based on the case study observed beforehand.

The noticeable difference of the probability that the learner has an active learning style

between the first and second level (from 89.71% to 61.49%) indicate that the “time to

debug” and “number of objects’ code viewed” parameters do provide a reasonable

assessment of a player’s processing learning style. If this trend continues for future

levels, we can predict seeing further refinement of this learning style as the player plays

the game.

The consistency between both the perception and input learning styles could

mainly be attributed to the API component of the game rarely being used. Perhaps if

more attention was given to the feature within the game, this metric could be a better

predictor of both learning styles. However, because the combination of the limited

awareness of the API and the large weight given to the API parameter (over four times

heavier than its counterpart metric), it ultimately skewed the data in a homogenous

direction. For the input and perception learning styles, the weight of the API parameter

should be lowered in relation with the learning style’s other parameters. Additionally,

instead of determining the likelihood of a player opening the API through sampling over

the total number of code edits, it would be wiser to sample over the total number of

modifiable enemies since each modifiable enemy can be considered its own problem.

www.manaraa.com

110

Readjusting and honing the API’s weight could lead to an increased variance in the

perception and input learning style. Finally, upon further evaluation of the “objects seen”

parameter, the impact should be readjusted to the verbal rather than visual input learning

style because a visual learner tends not to open an object’s code and view its verbal

context as seen through the case study. This amalgamation of changes should lead to

more precise and different classifications of multiple users.

6.1.2 Introduction of New Learning Parameters

Furthermore, to allow for a smooth progression of concepts, the “introduction of

faults” part of the level introduces a single line or two of modifiable code, but not a

completely empty terminal window to work with. For instance, in the second level, once

the player figures out the use of System.activate(#);, they encounter challenges revolving

around activating doors using integer variables. However, instead of writing variables

from scratch, the challenges involve manipulating integer variables to satisfy the

System.activate(); parameter. The player can simply change the integer value of key to

the number that will satisfy the power line to a specific door through trial and error. The

only indicator that they are performing poorly is if there is an overestimation and/or lack

of progress through the puzzle. However, the player behaviors tracked primarily observe

the syntactic rather than semantic performance of the player.

 Unlike a web environment, System Dot does not have a discrete way to verify if a

player inputted the right code in a certain scenario other than determining its syntactical

accuracy. In an adaptive web learning environment aimed at teaching computer science,

www.manaraa.com

111

the system can validate the output generated from the user with a set of test cases. If the

virtual world was purely a learning environment, then we could simply validate an

individual’s code with the correct solution. Due to the infusion of a platforming game on

top of the learning environment, however, System Dot relies on both how well the player

can play the game as well as how their code can get them to certain areas in a reasonable

amount of time with limited attempts. As seen in the case study, the outcome is dynamic

and cannot be generalized for all the computational puzzles presented in the virtual

world. For instance, in the first level, there is a huge enemy blocking the path without the

ability for the player to defeat it by jumping on its head. Some players, like in the case

study, moved the object to the left, sending the enemy to its doom in a spiky pit and

removing the obstacle forever. On the other hand, alternative players decided to move the

object to the right, allowing them to progress to the next zone, but still blocking the path

to the next door. They then needed to input another command to change the enemy’s

color and finally pass. In both situations, the outcome was the same-- the players

conquered the challenge by thwarting the enemy. However, one situation was handled

more efficiently than the other by permitting some of the players to quickly pass the

object with one line of code rather than two. Which method of solving the problem was

better? According to an adaptive web environment, both cases would have been deemed

acceptable and changed the impact of a corresponding learning style similarly. However,

in a virtual world, players who moved the object to the left were more intuitive by

looking at the bigger picture of the problem at hand.

www.manaraa.com

112

Based on the oversight of the semantic nature of the gamified learning

environment and after a heavy analysis of the case study before, there were several player

behavior styles that could provide beneficial parameters to the DBN in future playtesting

sessions. For instance, the speed at which the player progresses through the verbal

tutorials can indicate whether they are visual (if fast) or verbal (if slow). Additionally, the

time it takes for the player to start modifying the code could be compared to a threshold

similar to the “time to debug” parameter. If the player opens a terminal window and

spends an extended period of time reading and understanding the code before exiting,

debugging, or modifying the code, then we can say they are being more reflective;

otherwise, active. In puzzling scenarios like the enemy blocking the path in the first level

or the order of which to activate power lines in the second level, a “par” attribute like golf

can be assigned to these situations. If the player exceeds the optimal amount of times they

should be modifying the code, they will be penalized as an intuitive learner. The farther

they are from the problem’s par, the less they are considered an intuitive learner. Finally,

gameplay metrics like the amount of player deaths can act like a semantic error— if the

player dies at a key moment, it can negatively affect a certain learning style. For instance,

a player death after a verbal tutorial from IntelliSense showing the player how to avoid

said death can negatively affect how likely the player is at being a verbal learner. These

suggested learning parameters to the DBN would not have been realized without

observing the log files of a player’s progression throughout the virtual world.

www.manaraa.com

113

6.2 Usability Testing

The intention of System Dot was to introduce programming in a fun and intuitive

way while accounting for the shortcomings of current CS education today. The usability

testing did not set out to determine if System Dot succeeded in teaching programming.

Instead, its goal was to evaluate System Dot’s effectiveness at integrating a computer

science learning environment in a game-like virtual world. According to the below

average SUS score of 53, there needs to be improvement with the current design of

System Dot.

After observing and viewing feedback from players on the usability survey, there

are positive takeaways from a player’s interaction with the game. For instance, there is a

consensus that the way programming concepts were integrated within the virtual world

was seamless and creative. When testers were introduced to new concepts, almost all of

them believed that it tied together with ideas seen before in the level. In terms of the

interface of the virtual world, most testers believed the terminal window was a proper

coding environment, but those who had the most programming experience complained

about the lack of proper text caret maneuverability (i.e. holding the CONTROL key and

highlighting an entire word). When asked how often they used the visual glossary API at

the top-left corner of the screen, most of them agreed that they would have used it more if

there was additional clarification for the later challenges (hence why it was rarely

considered for adaptability). Finally, most testers enjoyed the atmosphere and setting of

the game, highlighting the sound design and setting as “really fitting”. As discussed

before, a virtual world allows the player to physically put themselves into the player’s

www.manaraa.com

114

shoes and experience new challenges along with their avatar. Wrapping the learning

environment around a computing setting with CS lingo further reinforces that desire to

learn and remain engaged.

Nevertheless, let us address the design decisions that may have resulted in the

below-average SUS score. The first level of System Dot was constructed as an

introduction to the game component of the virtual world-- the essentials of player

movement, the basics of interacting with a terminal window, and a sneak peek at the

system commands. When informally observing the players after the first level, most of

them were progressing at a smooth pace and not getting lost. This was as expected

because similar results were found in the Honor’s thesis user testing of the first level. In

that user testing session, most players did not find the layout or progression of the level

confusing, but complained about the extraneous guidance of IntelliSense. Therefore,

when approaching the design of the second level, there was a conscious decision to

drastically reduce the amount of handholding by IntelliSense and employ a more

endogenous constructivist philosophy where the learning happens from within the player

rather than from the external environment.

Unfortunately, this new design decision made players feel like they were “left in

the dark” when approaching these new problems. Without any guidance, they questioned

their choices and were not fully confident that their actions would reap the best results.

This may be indicative of a problem-driven learning environment, but the lack of any

guidance from IntelliSense made the players feel less like they were in an environment to

learn and more like they were in a playground with unintentional design choices. For

www.manaraa.com

115

instance, several times throughout one tester’s play session, they kept wondering if the

actions they were performing in the “string section” of the game were acceptable. This

type of wavering thought process in the game leads to the lack of confidence and need for

guidance reflected in the SUS results. Trying to find that balance of handholding and

independent discovery will require a continued process of trial and error with players.

www.manaraa.com

116

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

 Computer science is essential to the prosperity of our computer-centric economy,

but not enough attention has been placed on its significance in current K-12 education.

Research has shown that shifting our focus from a traditional teaching style to a more

problem-driven approach with an emphasis on computational thinking can not only get

more K-12 students interested but also prepared for college and advanced topics.

Moreover, the recent introduction of adaptive learning environments in the computer

science field have also shown an increase in the rate of retention and engagement by

elementary and high school students. Therefore, this thesis revolved around the

construction and implementation of these solutions into a problem-driven, adaptive

virtual world called System Dot.

 The Felder-Silverman Learning Style Model was implemented due to popularity

and success rate with other adaptive systems. Using a dynamic Bayesian network to

classify a player’s learning style based on this model provided an imperative first step to

building an adaptive virtual world. Testing System Dot with more than ten users allowed

us to see the faults with this approach by delivering insight into how to properly readjust

certain learning parameters and introduce new ones. Furthermore, the poor SUS score

from the usability surveys continue to emphasize a reevaluation of the virtual world’s

design from a hands-off to a more guided problem-driven teaching style. In the end,

continued effort will be made with System Dot to harness its teaching potential in

www.manaraa.com

117

computer science and provide a personalized experience for anyone planning to go into

the computer science field. With relentless refinement of the adaptability component of

the virtual world and placing the game in front of as many users as possible, System Dot

can be in the hands of millions of students with an interest in computers.

7.2 Contributions to the Field

 The findings of this thesis will redound to the field of computer science and

development of educational virtual worlds revolving around computer science

instruction. First, this thesis involves a careful application of learning theory-based

design elements to a virtual world for teaching computer science to young people.

Secondly, it also revolved around the building and testing of a model for detecting learner

styles through actions in a virtual world-based educational game. Lastly, this thesis built

a foundation for an adaptive learning game in which on-the-fly adaptive feedback and

gameplay can be achieved by detecting a user’s learning style, even when they adapt to

new situations in the virtual world-based game.

7.3 Future Work

While there are some sections of the virtual world that accomplished the original

intention of this thesis, there are several areas that could be improved and measured in the

future to make the game more effective at introducing programming.

www.manaraa.com

118

7.3.1 Finding the Balance for External Guidance

The usability tests have shown that it is difficult to balance how much guidance is

given to the player without it being overbearing. With too many tutorials, the player feels

underestimated as a learner and becomes disinterested in the learning environment. On

the other hand, having little to no guidance throughout the virtual world diminishes a

player’s confidence and they start questioning the integrity of their experience. The poor

SUS score is indicative of that contrast from an environment that holds the learner’s hand

to one that casts them out into the wild. As a result, more trial and error should be done in

the future when designing the presence of external influencers in the virtual world like

IntelliSense.

7.3.2 Fixing Bugs

It is impossible to account for all the bugs that will appear in a game due to the

infinitesimal ways it can be played without the developer’s intention. Hundreds of bugs

have been squashed since the game’s inception during the Honor’s thesis, but many more

have been discovered since the usability tests. Bugs ranging from causing blocks to

reform on top of the player and shifting their avatar outside the world to defects where

players would cease taking damage because they purchased a health upgrade right before

they entered a boss fight. Similar to finding the perfect balance between extraneous and

absent guidance, iterative testing must be performed on a regular basis to identify and

eliminate these bugs in a timely manner.

www.manaraa.com

119

7.3.3 Introducing Physical Learning Parameters

More attention can be given to the physical nature of the player as they are

progressing through the virtual world. For instance, the patterns of their mouse

movements or keystrokes can be leveraged to assess a certain learning style. To a greater

extreme, eye-tracking software can also be used to assess the gaze of the player as they

squirm in difficult puzzles or discover a solution to a perplexing problem. Log files can

only get so far when they primarily deal with a rudimentary way the player interacts with

the system. Being able to extend to this new dimension allows for a greater refinement of

the adaptability component of the virtual world and a more reliable dynamic Bayesian

network outcome.

7.3.4 A Neural Network Approach

There was a lot of discussion about how the virtual world’s design did not allow

for an easy way to track whether a certain player’s behavior impacted a learning style.

Because of this indiscrete way to measure data, it would be advantageous to take this

logged player behavior as input and then the corresponding learning style output from the

ILSQ and feed this data into a neural network. A neural network approach was going to

be implemented for this thesis, but due to time constraints and a lack of a large amount of

data to properly train the network, a Bayesian network was used instead. However, if data

can be gathered by more than a hundred participants, a neural network can be integrated

within System Dot in the future to truly create a machine learning algorithm capable of

self-adjusting and self-improving as the player continues to play through the game.

www.manaraa.com

120

REFERENCES

Alexandra Gasparinatou, & Maria Grigoriadou. (2015). Supporting Student Learning in

Computer Science Education via the Adaptive Learning Environment ALMA. Systems,

3(4), 237-263.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM

Inroads,2(1), 48. doi:10.1145/1929887.1929905

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged:

School students doing real computing without computers. The New Zealand Journal of

Applied Computing and Information Technology, 13(1), 20-29.

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of

Computers in Mathematics and Science Teaching, 20(1), 45-74.

Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and adaptive

educational systems. In The adaptive web (pp. 3-53). Springer Berlin Heidelberg.

Carmona, C., Castillo, G., & Millán, E. (2007). Discovering student preferences in e-

learning. In Proceedings of the international workshop on applying data mining in e-

learning (pp. 33-42).

Carmona, C., Castillo, G., & Millán, E. (2008, July). Designing a dynamic bayesian

network for modeling students' learning styles. In Advanced Learning Technologies,

2008. ICALT'08. Eighth IEEE International Conference on (pp. 346-350). IEEE.

Carter, L. (2006). Why students with an apparent aptitude for computer science don't

choose to major in computer science. ACM SIGCSE Bulletin,38(1), 27.

doi:10.1145/1124706.1121352

Chittaro, L., & Ranon, R. (2007). Adaptive hypermedia techniques for 3D educational

virtual environments. IEEE Intelligent Systems, 22(4).

Cognitive Apprenticeship (Collins et al.) - Learning Theories. (n.d.). Retrieved

November 17, 2016, from https://www.learning-theories.com/cognitive-apprenticeship-

collins-et-al.html

https://www.learning-theories.com/cognitive-apprenticeship-collins-et-al.html
https://www.learning-theories.com/cognitive-apprenticeship-collins-et-al.html
https://www.learning-theories.com/cognitive-apprenticeship-collins-et-al.html
https://www.learning-theories.com/cognitive-apprenticeship-collins-et-al.html

www.manaraa.com

121

Cooper, S., Dann, W., & Pausch, R. (2003, February). Teaching objects-first in

introductory computer science. In ACM SIGCSE Bulletin (Vol. 35, No. 1, pp. 191-195).

ACM.

Culbertson, M. J. (2016). Bayesian networks in educational assessment: The state of the

field. Applied Psychological Measurement, 40(1), 3-21.

Dean, T., Kanazawa, K. (1989). “A model for reasoning about persistence and

causation”. Computational Intelligence, 5, (1989) pp.142-150

DesJardins, M. (2015, October 22). The real reason U.S. students lag behind in computer

science. Retrieved from http://fortune.com/2015/10/22/u-s-students-computer-science/

Felder, R.M., Soloman, B.A. “Index of Learning Style Questionnaire (ILSQ)”. URL last

accessed on 10-2017. http://www.engr.ncsu.edu/learningstyles/ilsweb.html

Felder, R.M., Soloman, B.A. “Learning styles and strategies”, (2003). URL last accessed

on 10-2017. http://www.ncsu.edu/felder-public/ILSdir/styles.htm

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &

Wenderoth, M. P. (2014). Active learning increases student performance in science,

engineering, and mathematics. PNAS,111, 23rd ser., 8410-8415.

doi:10.1073/pnas.1319030111

Gallup (2016). Images of Computer Science: Perceptions Among Students, Parents, and

Educators in the U.S. Retrieved from https://services.google.com/fh/files/misc/images-of-

computer-science-report.pdf

Gallup (2016). Trends in State of Computer Science in U.S. K-12 Schools. Retrieved

from http://services.google.com/fh/files/misc/trends-in-the-state-of-computer-science-

report.pdf

García, P., Amandi, A., Schiaffino, S., & Campo, M. (2005). Using Bayesian networks to

detect students’ learning styles in a web-based education system. Proc of ASAI, Rosario,

115-126.

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An

intelligent tutoring system with mixed-initiative dialogue. IEEE Transactions on

Education, 48(4), 612-618.

http://fortune.com/2015/10/22/u-s-students-computer-science/
http://fortune.com/2015/10/22/u-s-students-computer-science/
http://www.engr.ncsu.edu/learningstyles/ilsweb.html
http://www.engr.ncsu.edu/learningstyles/ilsweb.html
http://www.ncsu.edu/felder-public/ILSdir/styles.htm
http://www.ncsu.edu/felder-public/ILSdir/styles.htm
https://services.google.com/fh/files/misc/images-of-computer-science-report.pdf
https://services.google.com/fh/files/misc/images-of-computer-science-report.pdf
https://services.google.com/fh/files/misc/images-of-computer-science-report.pdf
https://services.google.com/fh/files/misc/images-of-computer-science-report.pdf
http://services.google.com/fh/files/misc/trends-in-the-state-of-computer-science-report.pdf
http://services.google.com/fh/files/misc/trends-in-the-state-of-computer-science-report.pdf
http://services.google.com/fh/files/misc/trends-in-the-state-of-computer-science-report.pdf
http://services.google.com/fh/files/misc/trends-in-the-state-of-computer-science-report.pdf

www.manaraa.com

122

Hamari, J., Koivisto, J., & Sarsa, H. (2014, January). Does gamification work?--a

literature review of empirical studies on gamification. In System Sciences (HICSS), 2014

47th Hawaii International Conference on (pp. 3025-3034). IEEE.

Hauger, D., & Köck, M. (2007, September). State of the Art of Adaptivity in E-Learning

Platforms. In LWA (pp. 355-360).

Hein, G. E. (2016). Constructivist Learning Theory. Retrieved November 16, 2016, from

https://www.exploratorium.edu/education/ifi/constructivist-learning

Keith J. O'Hara , Jennifer S. Kay, Open source software and computer science education,

Journal of Computing Sciences in Colleges, v.18 n.3, p.1-7, February 2003

Klašnja-Milićević, A., Vesin, B., Ivanović, M., & Budimac, Z. (2011). E-Learning

personalization based on hybrid recommendation strategy and learning style

identification. Computers & Education, 56(3), 885-899.

Koulouri, T., Lauria, S., & Macredie, R. (2015). Teaching Introductory Programming: A

Quantitative Evaluation of Different Approaches. ACM Transactions on Computing

Education (TOCE), 14(4), 1-28.

Kury, N., & West, G. (2016). System Dot: Shifting the Programming Paradigm (Honor’s

thesis). Arizona State University, Tempe, Arizona.

Lambert, L., & Guiffre, H. (2009). Computer science outreach in an elementary school.

Journal of Computing Sciences in colleges, 24(3), 118-124.

Le, N. T. (2016). A classification of adaptive feedback in educational systems for

programming. Systems, 4(2), 22.

LE, N. T., & PINKWART, N. (2015). Bayesian Networks For Competence-based

Student Modeling. In Proceedings of the 11th International Conference on Knowledge

Management.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science

concepts with scratch. Computer Science Education, 23(3), 239-264.

https://www.exploratorium.edu/education/ifi/constructivist-learning
https://www.exploratorium.edu/education/ifi/constructivist-learning
https://www.exploratorium.edu/education/ifi/constructivist-learning
https://www.exploratorium.edu/education/ifi/constructivist-learning
http://dl.acm.org/citation.cfm?id=771716&CFID=739451560&CFTOKEN=27809284
http://dl.acm.org/citation.cfm?id=771716&CFID=739451560&CFTOKEN=27809284

www.manaraa.com

123

Microsoft (n.d). Building the workforce of tomorrow, today. Retrieved from

https://www.legis.iowa.gov/docs/publications/SD/21103.pdf

Moshman, D. (1982). Exogenous, endogenous, and dialectical constructivism.

Developmental review, 2(4), 371-384.

Philip Kerr; Adaptive learning, ELT Journal, Volume 70, Issue 1, 1 January 2016, Pages

88–93, https://doi-org.ezproxy1.lib.asu.edu/10.1093/elt/ccv055

Prensky, M., & Prensky, M. (2007). Digital game-based learning (Vol. 1). St. Paul, MN:

Paragon house.

Scott, E., Soria, A., & Campo, M. (2017). Adaptive 3D Virtual Learning Environments—

A Review of the Literature. IEEE Transactions on Learning Technologies, 10(3), 262-

276.

Van Seters, Ossevoort, Tramper, & Goedhart. (2012). The influence of student

characteristics on the use of adaptive e-learning material. Computers & Education, 58(3),

942-952.

Weibell, C. J. (2011). Principles of learning: 7 principles to guide personalized, student-

centered learning in the technology-enhanced, blended learning environment. Retrieved

July 4, 2011 from https://principlesoflearning.wordpress.com

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In Support of Pair

Programming in the Introductory Computer Science Course. Computer Science

Education,12(3), 197-212. doi:10.1076/csed.12.3.197.8618

Wilson, B. C., & Shrock, S. (2001, February). Contributing to success in an introductory

computer science course: a study of twelve factors. In ACM SIGCSE Bulletin (Vol. 33,

No. 1, pp. 184-188). ACM.

Wolf, C. (2003). iWeaver: towards ‘learning style’ - based e-learning in computer science

education. In: Australasian Computing Education Conference, Adelaide, Australia. vol.

20

Zaïane, O.R. (2002). Building a recommender agent for e-learning systems. In: The

International Conference on Computers in Education, ICCE’02. 55–59.

https://www.legis.iowa.gov/docs/publications/SD/21103.pdf
https://www.legis.iowa.gov/docs/publications/SD/21103.pdf
https://www.legis.iowa.gov/docs/publications/SD/21103.pdf
https://www.legis.iowa.gov/docs/publications/SD/21103.pdf
https://doi-org.ezproxy1.lib.asu.edu/10.1093/elt/ccv055
https://doi-org.ezproxy1.lib.asu.edu/10.1093/elt/ccv055
https://principlesoflearning.wordpress.com/
https://principlesoflearning.wordpress.com/

www.manaraa.com

124

Zywno, M. S. (2003, June). A contribution to validation of score meaning for Felder-

Soloman’s index of learning styles. In Proceedings of the 2003 American Society for

Engineering Education annual conference & exposition (Vol. 119, pp. 1-5). Washington,

DC: American Society for Engineering Education.

